Quickstart

Getting Started

To create a base map, simply pass your starting coordinates to Folium:


In [1]:
# This is to `import` the repository's version of folium ; not the installed one.
import sys, os
sys.path.insert(0, '..')

import folium
map_osm = folium.Map(location=[45.5236, -122.6750])

To display it in a Jupyter notebook, simply ask for the object representation:


In [2]:
map_osm


Out[2]:

To save it in a file:


In [3]:
map_osm.save('/tmp/map.html')

Folium defaults to OpenStreetMap tiles, but Stamen Terrain, Stamen Toner, Mapbox Bright, and Mapbox Control room tiles are built in:


In [4]:
folium.Map(location=[45.5236, -122.6750],
           tiles='Stamen Toner',
           zoom_start=13)


Out[4]:

Folium also supports Cloudmade and Mapbox custom tilesets- simply pass your key to the API_key keyword:

folium.Map(location=[45.5236, -122.6750],
           tiles='Mapbox',
           API_key='your.API.key')

Lastly, Folium supports passing any Leaflet.js compatible custom tileset:

folium.Map(location=[45.372, -121.6972],
           zoom_start=12,
           tiles='http://{s}.tiles.yourtiles.com/{z}/{x}/{y}.png',
           attr='My Data Attribution')

Markers

Folium supports the plotting of numerous marker types, starting with a simple Leaflet style location marker with popup text:


In [5]:
map_1 = folium.Map(location=[45.372, -121.6972],
                   zoom_start=12,
                   tiles='Stamen Terrain')
folium.Marker([45.3288, -121.6625], popup='Mt. Hood Meadows').add_to(map_1)
folium.Marker([45.3311, -121.7113], popup='Timberline Lodge').add_to(map_1)
map_1


Out[5]:

Folium supports colors and marker icon types (from bootstrap)


In [6]:
map_1 = folium.Map(location=[45.372, -121.6972],
                   zoom_start=12,
                   tiles='Stamen Terrain')
folium.Marker([45.3288, -121.6625],
              popup='Mt. Hood Meadows',
              icon=folium.Icon(icon='cloud')
             ).add_to(map_1)
folium.Marker([45.3311, -121.7113],
              popup='Timberline Lodge',
              icon=folium.Icon(color='green')
             ).add_to(map_1)
folium.Marker([45.3300, -121.6823],
              popup='Some Other Location',
              icon=folium.Icon(color='red',icon='info-sign')
              ).add_to(map_1)
map_1


Out[6]:

Folium also supports circle-style markers, with custom size and color:


In [7]:
map_2 = folium.Map(location=[45.5236, -122.6750],
                   tiles='Stamen Toner',
                   zoom_start=13)
folium.Marker([45.5244, -122.6699],
              popup='The Waterfront'
             ).add_to(map_2)
folium.CircleMarker([45.5215, -122.6261],
                    radius=500,
                    popup='Laurelhurst Park',
                    color='#3186cc',
                    fill_color='#3186cc',
                   ).add_to(map_2)
map_2


Out[7]:

Folium has a convenience function to enable lat/lng popovers:


In [8]:
map_3 = folium.Map(
    location=[46.1991, -122.1889],
    tiles='Stamen Terrain',
    zoom_start=13)
map_3.add_child(folium.LatLngPopup())
map_3


Out[8]:

Click-for-marker functionality will allow for on-the-fly placement of markers:


In [9]:
map_4 = folium.Map(location=[46.8527, -121.7649],
                   tiles='Stamen Terrain',
                   zoom_start=13)
folium.Marker([46.8354, -121.7325], popup='Camp Muir').add_to(map_4)
map_4.add_child(folium.ClickForMarker(popup="Waypoint"))
map_4


Out[9]:

Folium also supports the Polygon marker set from the Leaflet-DVF:


In [10]:
map_5 = folium.Map(location=[45.5236, -122.6750],
                   zoom_start=13)

folium.RegularPolygonMarker(
    [45.5012, -122.6655],
    popup='Ross Island Bridge',
    fill_color='#132b5e',
    number_of_sides=3,
    radius=10
    ).add_to(map_5)
folium.RegularPolygonMarker(
    [45.5132, -122.6708],
    popup='Hawthorne Bridge',
    fill_color='#45647d',
    number_of_sides=4,
    radius=10
    ).add_to(map_5)
folium.RegularPolygonMarker(
    [45.5275, -122.6692],
    popup='Steel Bridge',
    fill_color='#769d96',
    number_of_sides=6,
    radius=10
    ).add_to(map_5)
folium.RegularPolygonMarker(
    [45.5318, -122.6745],
    popup='Broadway Bridge',
    fill_color='#769d96',
    number_of_sides=8,
    radius=10
    ).add_to(map_5)
map_5


Out[10]:

Vincent/Vega Markers

Folium enables passing vincent visualizations to any marker type, with the visualization as the popover:


In [11]:
import json

buoy_map = folium.Map(
    [46.3014, -123.7390],
    zoom_start=7,
    tiles='Stamen Terrain'
    )

folium.RegularPolygonMarker(
    [47.3489, -124.708],
    fill_color='#43d9de',
    radius=12,
    popup=folium.Popup(max_width=450).add_child(
        folium.Vega(json.load(open('vis1.json')), width=450, height=250))
    ).add_to(buoy_map)

folium.RegularPolygonMarker(
    [44.639, -124.5339],
    fill_color='#43d9de',
    radius=12,
    popup=folium.Popup(max_width=450).add_child(
        folium.Vega(json.load(open('vis2.json')), width=450, height=250))
    ).add_to(buoy_map)

folium.RegularPolygonMarker(
    [46.216, -124.1280],
    fill_color='#43d9de',
    radius=12,
    popup=folium.Popup(max_width=450).add_child(
        folium.Vega(json.load(open('vis3.json')), width=450, height=250))
    ).add_to(buoy_map)

buoy_map


Out[11]:

For more information about popups, please visit Popups.ipynb

GeoJSON/TopoJSON Overlays

Both GeoJSON and TopoJSON layers can be passed to the map as an overlay, and multiple layers can be visualized on the same map:


In [12]:
ice_map = folium.Map(location=[-59.1759, -11.6016],
                   tiles='Mapbox Bright', zoom_start=2)

folium.GeoJson(open('antarctic_ice_edge.json'),
               name='geojson'
              ).add_to(ice_map)

folium.TopoJson(open('antarctic_ice_shelf_topo.json'),
                'objects.antarctic_ice_shelf',
                name='topojson',
               ).add_to(ice_map)

folium.LayerControl().add_to(ice_map)
ice_map


Out[12]:

Choropleth maps

Folium allows for the binding of data between Pandas DataFrames/Series and Geo/TopoJSON geometries. Color Brewer sequential color schemes are built-in to the library, and can be passed to quickly visualize different combinations:


In [13]:
import folium
import pandas as pd

state_geo = r'us-states.json'
state_unemployment = r'US_Unemployment_Oct2012.csv'

state_data = pd.read_csv(state_unemployment)

#Let Folium determine the scale
map = folium.Map(location=[48, -102], zoom_start=3)
map.geo_json(geo_path=state_geo, data=state_data,
             columns=['State', 'Unemployment'],
             key_on='feature.id',
             fill_color='YlGn', fill_opacity=0.7, line_opacity=0.2,
             legend_name='Unemployment Rate (%)')
map


../folium/folium.py:504: UserWarning: This method is deprecated. Please use Map.choropleth instead.
  warnings.warn('This method is deprecated. '
../folium/folium.py:506: FutureWarning: 'threshold_scale' default behavior has changed. Now you get a linear scale between the 'min' and the 'max' of your data. To get former behavior, use folium.utilities.split_six.
  return self.choropleth(*args, **kwargs)
Out[13]:

Folium creates the legend on the upper right based on a D3 threshold scale, and makes the best-guess at values via quantiles. Passing your own threshold values is simple:


In [14]:
map = folium.Map(location=[48, -102], zoom_start=3)
map.geo_json(geo_path=state_geo, data=state_data,
             columns=['State', 'Unemployment'],
             threshold_scale=[5, 6, 7, 8, 9, 10],
             key_on='feature.id',
             fill_color='BuPu', fill_opacity=0.7, line_opacity=0.5,
             legend_name='Unemployment Rate (%)',
             reset=True)
map


Out[14]:

By binding data via the Pandas DataFrame, different datasets can be quickly visualized. In the following example, the df DataFrame contains six columns with different economic data, a few of which we will visualize:


In [15]:
import pandas as pd
unemployment = pd.read_csv('./US_Unemployment_Oct2012.csv')

m = folium.Map([43,-100], zoom_start=4)

m.choropleth(
    geo_str=open('us-states.json').read(),
    data=unemployment,
    columns=['State', 'Unemployment'],
    key_on='feature.id',
    fill_color='YlGn',
    )
m


/home/filipe/.virtualenvs/iris/lib/python2.7/site-packages/ipykernel/__main__.py:11: FutureWarning: 'threshold_scale' default behavior has changed. Now you get a linear scale between the 'min' and the 'max' of your data. To get former behavior, use folium.utilities.split_six.
Out[15]:

For more choropleth example, please visit GeoJSON and choropleth.ipynb