In [77]:
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
import pylab
import glob
from PIL import Image
%matplotlib inline
In [51]:
paintings = list(set(glob.glob('*/*.jpg')) - set(glob.glob('contents/*')) - set(glob.glob('outputs/*')))
In [45]:
f, ax = plt.subplots(nrows=3, ncols=5)
for i, row in enumerate(ax):
for j, col in enumerate(row):
col.imshow(mpimg.imread(paintings[i*3 + j]))
f.set_size_inches(24, 6)
In [5]:
synthesized_textures = glob.glob('*/Syn*.png')
In [18]:
f, ax = plt.subplots(nrows=2, ncols=7)
for i, row in enumerate(ax):
for j, col in enumerate(row):
col.imshow(mpimg.imread(synthesized_textures[i*2 + j]))
f.set_size_inches(28,8)
In [65]:
contents = glob.glob('contents/*.jpg')
In [125]:
f, ax = plt.subplots(nrows=2, ncols=2)
for i, row in enumerate(ax):
for j, col in enumerate(row):
col.imshow(mpimg.imread(contents[i*2 + j]))
f.set_size_inches(15,10)
In [121]:
# SOURCE : http://www.pmavridis.com/misc/heatmaps/
adler_1 = mpimg.imread('outputs/adler/adler_1.jpg')
adler_2 = mpimg.imread('outputs/adler/adler_Syn1.jpg')
# Calculate the absolute difference on each channel separately
error_r = np.fabs(np.subtract(adler_2[:,:,0], adler_1[:,:,0]))
error_g = np.fabs(np.subtract(adler_2[:,:,1], adler_1[:,:,1]))
error_b = np.fabs(np.subtract(adler_2[:,:,2], adler_1[:,:,2]))
# Calculate the maximum error for each pixel
lum_img = np.maximum(np.maximum(error_r, error_g), error_b)
from pylab import rcParams
rcParams['figure.figsize'] = 20, 40
plt.subplot(1, 3, 1)
plt.imshow(adler_1) #
plt.title('Original Image as Style')
plt.subplot(1, 3, 2)
plt.imshow(adler_2)
plt.title('Synthesized Texture as Style')
plt.subplot(1, 3, 3)
plt.imshow(lum_img.astype(np.uint8))
plt.set_cmap('jet')
plt.title('Difference')
plt.show()
In [123]:
# SOURCE : http://www.pmavridis.com/misc/heatmaps/
adler_1 = mpimg.imread('outputs/raven/raven_8.jpg')
adler_2 = mpimg.imread('outputs/raven/raven_Syn8.jpg')
# Calculate the absolute difference on each channel separately
error_r = np.fabs(np.subtract(adler_2[:,:,0], adler_1[:,:,0]))
error_g = np.fabs(np.subtract(adler_2[:,:,1], adler_1[:,:,1]))
error_b = np.fabs(np.subtract(adler_2[:,:,2], adler_1[:,:,2]))
# Calculate the maximum error for each pixel
lum_img = np.maximum(np.maximum(error_r, error_g), error_b)
from pylab import rcParams
rcParams['figure.figsize'] = 20, 40
plt.subplot(1, 3, 1)
plt.imshow(adler_1) #
plt.title('Original Image as Style')
plt.subplot(1, 3, 2)
plt.imshow(adler_2)
plt.title('Synthesized Texture as Style')
plt.subplot(1, 3, 3)
plt.imshow(lum_img.astype(np.uint8))
plt.set_cmap('jet')
plt.title('Difference')
plt.show()
In [124]:
# SOURCE : http://www.pmavridis.com/misc/heatmaps/
adler_1 = mpimg.imread('outputs/joker/joker_10.jpg')
adler_2 = mpimg.imread('outputs/joker/joker_Syn10.jpg')
# Calculate the absolute difference on each channel separately
error_r = np.fabs(np.subtract(adler_2[:,:,0], adler_1[:,:,0]))
error_g = np.fabs(np.subtract(adler_2[:,:,1], adler_1[:,:,1]))
error_b = np.fabs(np.subtract(adler_2[:,:,2], adler_1[:,:,2]))
# Calculate the maximum error for each pixel
lum_img = np.maximum(np.maximum(error_r, error_g), error_b)
from pylab import rcParams
rcParams['figure.figsize'] = 20, 40
plt.subplot(1, 3, 1)
plt.imshow(adler_1) #
plt.title('Original Image as Style')
plt.subplot(1, 3, 2)
plt.imshow(adler_2)
plt.title('Synthesized Texture as Style')
plt.subplot(1, 3, 3)
plt.imshow(lum_img.astype(np.uint8))
plt.set_cmap('jet')
plt.title('Difference')
plt.show()