In [26]:
import pandas as pd
# import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
import dateutil.parser
First, I made a mistake naming the data set! It's 2015 data, not 2014 data. But yes, still use
311-2014.csv. You can rename it.
Import your data, but only the first 200,000 rows. You'll also want to change the index to be a datetime based on the Created Date column - you'll want to check if it's already a datetime, and parse it if not.
In [27]:
df=pd.read_csv("311-2014.csv",nrows=20000)
/usr/local/lib/python3.5/site-packages/IPython/core/interactiveshell.py:2723: DtypeWarning: Columns (8) have mixed types. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)
In [28]:
df.head()
Out[28]:
Unique Key
Created Date
Closed Date
Agency
Agency Name
Complaint Type
Descriptor
Location Type
Incident Zip
Incident Address
...
Bridge Highway Name
Bridge Highway Direction
Road Ramp
Bridge Highway Segment
Garage Lot Name
Ferry Direction
Ferry Terminal Name
Latitude
Longitude
Location
0
31015465
07/06/2015 10:58:27 AM
07/22/2015 01:07:20 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Demand for Cash
NaN
11360
27-16 203 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.773540
-73.788237
(40.773539552542, -73.78823697228408)
1
30997660
07/03/2015 01:26:29 PM
07/03/2015 02:08:20 PM
NYPD
New York City Police Department
Vending
In Prohibited Area
Residential Building/House
10019
200 CENTRAL PARK SOUTH
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.767021
-73.979448
(40.76702142171206, -73.97944780718524)
2
31950223
11/09/2015 03:55:09 AM
11/09/2015 08:08:57 AM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
10453
1993 GRAND AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.852671
-73.910608
(40.85267061877697, -73.91060771362552)
3
31000038
07/03/2015 02:18:32 AM
07/03/2015 07:54:48 AM
NYPD
New York City Police Department
Noise - Commercial
Loud Music/Party
Club/Bar/Restaurant
11372
84-16 NORTHERN BOULEVARD
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.755774
-73.883262
(40.755773786469966, -73.88326243225418)
4
30995614
07/04/2015 12:03:27 AM
07/04/2015 03:33:09 AM
NYPD
New York City Police Department
Noise - Street/Sidewalk
Loud Talking
Street/Sidewalk
11216
1057 BERGEN STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.676175
-73.951269
(40.67617516102934, -73.9512690004692)
5 rows × 53 columns
In [77]:
df.columns
Out[77]:
Index(['Unique Key', 'Created Date', 'Closed Date', 'Agency', 'Agency Name',
'Complaint Type', 'Descriptor', 'Location Type', 'Incident Zip',
'Incident Address', 'Street Name', 'Cross Street 1', 'Cross Street 2',
'Intersection Street 1', 'Intersection Street 2', 'Address Type',
'City', 'Landmark', 'Facility Type', 'Status', 'Due Date',
'Resolution Description', 'Resolution Action Updated Date',
'Community Board', 'Borough', 'X Coordinate (State Plane)',
'Y Coordinate (State Plane)', 'Park Facility Name', 'Park Borough',
'School Name', 'School Number', 'School Region', 'School Code',
'School Phone Number', 'School Address', 'School City', 'School State',
'School Zip', 'School Not Found', 'School or Citywide Complaint',
'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location',
'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp',
'Bridge Highway Segment', 'Garage Lot Name', 'Ferry Direction',
'Ferry Terminal Name', 'Latitude', 'Longitude', 'Location'],
dtype='object')
In [29]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20000 entries, 0 to 19999
Data columns (total 53 columns):
Unique Key 20000 non-null int64
Created Date 20000 non-null object
Closed Date 18788 non-null object
Agency 20000 non-null object
Agency Name 20000 non-null object
Complaint Type 20000 non-null object
Descriptor 19745 non-null object
Location Type 18372 non-null object
Incident Zip 18779 non-null object
Incident Address 15073 non-null object
Street Name 15069 non-null object
Cross Street 1 13224 non-null object
Cross Street 2 13179 non-null object
Intersection Street 1 2992 non-null object
Intersection Street 2 2965 non-null object
Address Type 18095 non-null object
City 18788 non-null object
Landmark 22 non-null object
Facility Type 9699 non-null object
Status 20000 non-null object
Due Date 17403 non-null object
Resolution Description 19838 non-null object
Resolution Action Updated Date 18630 non-null object
Community Board 20000 non-null object
Borough 20000 non-null object
X Coordinate (State Plane) 18093 non-null float64
Y Coordinate (State Plane) 18093 non-null float64
Park Facility Name 20000 non-null object
Park Borough 20000 non-null object
School Name 20000 non-null object
School Number 19991 non-null object
School Region 19597 non-null object
School Code 19597 non-null object
School Phone Number 20000 non-null object
School Address 20000 non-null object
School City 20000 non-null object
School State 20000 non-null object
School Zip 20000 non-null object
School Not Found 17987 non-null object
School or Citywide Complaint 0 non-null float64
Vehicle Type 6 non-null object
Taxi Company Borough 65 non-null object
Taxi Pick Up Location 494 non-null object
Bridge Highway Name 395 non-null object
Bridge Highway Direction 395 non-null object
Road Ramp 394 non-null object
Bridge Highway Segment 395 non-null object
Garage Lot Name 18 non-null object
Ferry Direction 6 non-null object
Ferry Terminal Name 17 non-null object
Latitude 18093 non-null float64
Longitude 18093 non-null float64
Location 18093 non-null object
dtypes: float64(5), int64(1), object(47)
memory usage: 8.1+ MB
In [30]:
dateutil.parser.parse('07/16/1990').month
Out[30]:
7
In [31]:
def parse_date (str_date):
return dateutil.parser.parse(str_date)#dateutil is a module, import parser class, then transform a string into a python time object
df['Created Date']= df['Created Date'].apply(parse_date)
df.head(3)
Out[31]:
Unique Key
Created Date
Closed Date
Agency
Agency Name
Complaint Type
Descriptor
Location Type
Incident Zip
Incident Address
...
Bridge Highway Name
Bridge Highway Direction
Road Ramp
Bridge Highway Segment
Garage Lot Name
Ferry Direction
Ferry Terminal Name
Latitude
Longitude
Location
0
31015465
2015-07-06 10:58:27
07/22/2015 01:07:20 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Demand for Cash
NaN
11360
27-16 203 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.773540
-73.788237
(40.773539552542, -73.78823697228408)
1
30997660
2015-07-03 13:26:29
07/03/2015 02:08:20 PM
NYPD
New York City Police Department
Vending
In Prohibited Area
Residential Building/House
10019
200 CENTRAL PARK SOUTH
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.767021
-73.979448
(40.76702142171206, -73.97944780718524)
2
31950223
2015-11-09 03:55:09
11/09/2015 08:08:57 AM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
10453
1993 GRAND AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.852671
-73.910608
(40.85267061877697, -73.91060771362552)
3 rows × 53 columns
What was the most popular type of complaint, and how many times was it filed?
In [72]:
df['Complaint Type'].value_counts()
# the most popular type of complaint is blocked driveway, and it was filed 2534 times
Out[72]:
Blocked Driveway 2534
Illegal Parking 2410
Noise - Street/Sidewalk 1584
Street Condition 1216
Noise - Commercial 1162
Consumer Complaint 705
Benefit Card Replacement 701
Broken Muni Meter 690
Derelict Vehicle 538
Noise - Vehicle 530
Taxi Complaint 489
Damaged Tree 420
Overgrown Tree/Branches 365
Highway Condition 364
HEAT/HOT WATER 359
Maintenance or Facility 333
Food Establishment 325
Animal Abuse 292
Graffiti 269
SCRIE 235
Dead Tree 224
Construction 219
UNSANITARY CONDITION 204
Indoor Air Quality 203
Root/Sewer/Sidewalk Condition 189
Sidewalk Condition 170
Homeless Encampment 160
Fire Safety Director - F58 159
PAINT/PLASTER 147
Traffic 145
...
DOF Property - Reduction Issue 2
Hazardous Materials 2
Drinking Water 2
Boilers 2
Open Flame Permit 2
Missed Collection (All Materials) 2
Beach/Pool/Sauna Complaint 2
Noise 2
Derelict Vehicles 2
Litter Basket / Request 2
New Tree Request 2
Bus Stop Shelter Placement 2
OUTSIDE BUILDING 1
Special Projects Inspection Team (SPIT) 1
Public Toilet 1
Unsanitary Animal Facility 1
ELEVATOR 1
Highway Sign - Missing 1
Window Guard 1
Other Enforcement 1
Unsanitary Pigeon Condition 1
Senior Center Complaint 1
Municipal Parking Facility 1
Highway Sign - Dangling 1
Compliment 1
Hazmat Storage/Use 1
Air Quality 1
X-Ray Machine/Equipment 1
DOF Property - Owner Issue 1
DOF Parking - Tax Exemption 1
Name: Complaint Type, dtype: int64
Make a horizontal bar graph of the top 5 most frequent complaint types.
In [75]:
df['Complaint Type'].value_counts().head(5).sort_values().plot(kind='barh')
Out[75]:
<matplotlib.axes._subplots.AxesSubplot at 0x112010fd0>
Which borough has the most complaints per capita? Since it's only 5 boroughs, you can do the math manually.
In [78]:
df['Borough'].value_counts()
Out[78]:
BROOKLYN 5761
QUEENS 5500
MANHATTAN 4491
BRONX 2446
Unspecified 988
STATEN ISLAND 814
Name: Borough, dtype: int64
In [79]:
people_bronx= 1438159
people_queens= 2321580
people_manhattan=1636268
people_brooklyn= 2621793
people_staten_island= 473279
In [80]:
complaints_per_capita_bronx= 29610/people_bronx
complaints_per_capita_bronx
Out[80]:
0.020588822237318682
According to your selection of data, how many cases were filed in March? How about May?
In [38]:
[x for x in list(df['Created Date'].values)]# if np.datetime64(x, 'M') == 3]
Out[38]:
[numpy.datetime64('2015-07-06T10:58:27.000000000'),
numpy.datetime64('2015-07-03T13:26:29.000000000'),
numpy.datetime64('2015-11-09T03:55:09.000000000'),
numpy.datetime64('2015-07-03T02:18:32.000000000'),
numpy.datetime64('2015-07-04T00:03:27.000000000'),
numpy.datetime64('2015-07-09T00:00:00.000000000'),
numpy.datetime64('2015-07-09T12:04:06.000000000'),
numpy.datetime64('2015-07-09T00:00:00.000000000'),
numpy.datetime64('2015-08-12T11:09:49.000000000'),
numpy.datetime64('2015-09-09T21:59:03.000000000'),
numpy.datetime64('2015-09-09T12:12:46.000000000'),
numpy.datetime64('2015-09-22T13:50:05.000000000'),
numpy.datetime64('2015-09-22T13:12:13.000000000'),
numpy.datetime64('2015-09-22T15:07:51.000000000'),
numpy.datetime64('2015-04-28T18:26:58.000000000'),
numpy.datetime64('2015-04-28T17:54:46.000000000'),
numpy.datetime64('2015-09-13T13:35:02.000000000'),
numpy.datetime64('2015-09-13T21:04:42.000000000'),
numpy.datetime64('2015-07-04T16:57:07.000000000'),
numpy.datetime64('2015-05-21T19:01:52.000000000'),
numpy.datetime64('2015-07-13T01:14:41.000000000'),
numpy.datetime64('2015-07-28T10:16:21.000000000'),
numpy.datetime64('2015-05-21T20:40:35.000000000'),
numpy.datetime64('2015-05-21T04:43:05.000000000'),
numpy.datetime64('2015-05-21T18:31:40.000000000'),
numpy.datetime64('2015-08-31T15:35:00.000000000'),
numpy.datetime64('2015-09-22T20:51:13.000000000'),
numpy.datetime64('2015-09-22T10:29:56.000000000'),
numpy.datetime64('2015-09-03T14:13:35.000000000'),
numpy.datetime64('2015-09-22T13:06:44.000000000'),
numpy.datetime64('2015-11-06T06:31:06.000000000'),
numpy.datetime64('2015-09-22T09:05:40.000000000'),
numpy.datetime64('2015-06-20T22:51:50.000000000'),
numpy.datetime64('2015-06-20T22:42:51.000000000'),
numpy.datetime64('2015-06-20T19:13:54.000000000'),
numpy.datetime64('2015-06-20T13:11:49.000000000'),
numpy.datetime64('2015-06-28T10:38:44.000000000'),
numpy.datetime64('2015-07-01T19:33:00.000000000'),
numpy.datetime64('2015-06-20T23:00:04.000000000'),
numpy.datetime64('2015-03-06T18:54:47.000000000'),
numpy.datetime64('2015-06-28T23:08:47.000000000'),
numpy.datetime64('2015-07-01T11:56:46.000000000'),
numpy.datetime64('2015-07-01T22:02:28.000000000'),
numpy.datetime64('2015-07-01T19:15:45.000000000'),
numpy.datetime64('2015-09-07T20:47:16.000000000'),
numpy.datetime64('2015-07-01T11:19:30.000000000'),
numpy.datetime64('2015-06-29T00:26:39.000000000'),
numpy.datetime64('2015-09-09T11:53:47.000000000'),
numpy.datetime64('2015-09-07T21:26:22.000000000'),
numpy.datetime64('2015-06-28T13:33:13.000000000'),
numpy.datetime64('2015-09-09T12:40:41.000000000'),
numpy.datetime64('2015-09-07T15:55:33.000000000'),
numpy.datetime64('2015-10-19T13:32:45.000000000'),
numpy.datetime64('2015-07-09T19:17:06.000000000'),
numpy.datetime64('2015-09-18T09:00:53.000000000'),
numpy.datetime64('2015-10-19T07:51:41.000000000'),
numpy.datetime64('2015-07-09T08:24:52.000000000'),
numpy.datetime64('2015-07-09T13:09:57.000000000'),
numpy.datetime64('2015-07-21T06:31:38.000000000'),
numpy.datetime64('2015-09-25T02:57:01.000000000'),
numpy.datetime64('2015-09-25T09:12:02.000000000'),
numpy.datetime64('2015-11-04T11:04:54.000000000'),
numpy.datetime64('2015-09-25T22:33:49.000000000'),
numpy.datetime64('2015-09-25T02:25:16.000000000'),
numpy.datetime64('2015-09-25T13:59:50.000000000'),
numpy.datetime64('2015-11-03T18:27:23.000000000'),
numpy.datetime64('2015-09-26T01:34:39.000000000'),
numpy.datetime64('2015-06-15T20:03:12.000000000'),
numpy.datetime64('2015-06-15T09:51:06.000000000'),
numpy.datetime64('2015-09-25T23:41:46.000000000'),
numpy.datetime64('2015-09-25T14:28:56.000000000'),
numpy.datetime64('2015-06-15T09:40:12.000000000'),
numpy.datetime64('2015-05-12T13:47:37.000000000'),
numpy.datetime64('2015-03-28T09:20:24.000000000'),
numpy.datetime64('2015-05-13T09:10:04.000000000'),
numpy.datetime64('2015-04-21T20:36:09.000000000'),
numpy.datetime64('2015-04-21T06:12:36.000000000'),
numpy.datetime64('2015-04-21T14:25:42.000000000'),
numpy.datetime64('2015-05-02T14:02:39.000000000'),
numpy.datetime64('2015-04-08T08:29:07.000000000'),
numpy.datetime64('2015-04-26T03:29:28.000000000'),
numpy.datetime64('2015-04-26T20:32:00.000000000'),
numpy.datetime64('2015-04-26T19:43:47.000000000'),
numpy.datetime64('2015-09-09T10:37:08.000000000'),
numpy.datetime64('2015-05-30T09:09:54.000000000'),
numpy.datetime64('2015-05-30T09:23:27.000000000'),
numpy.datetime64('2015-05-30T02:43:42.000000000'),
numpy.datetime64('2015-05-30T23:00:07.000000000'),
numpy.datetime64('2015-05-30T22:20:44.000000000'),
numpy.datetime64('2015-05-30T13:10:38.000000000'),
numpy.datetime64('2015-10-01T07:02:39.000000000'),
numpy.datetime64('2015-05-30T08:23:56.000000000'),
numpy.datetime64('2015-07-02T00:09:59.000000000'),
numpy.datetime64('2015-06-11T16:28:46.000000000'),
numpy.datetime64('2015-06-28T20:03:46.000000000'),
numpy.datetime64('2015-06-11T20:23:26.000000000'),
numpy.datetime64('2015-06-11T07:51:06.000000000'),
numpy.datetime64('2015-11-05T11:30:56.000000000'),
numpy.datetime64('2015-06-11T14:38:12.000000000'),
numpy.datetime64('2015-06-11T13:37:50.000000000'),
numpy.datetime64('2015-06-11T14:02:20.000000000'),
numpy.datetime64('2015-10-08T13:12:31.000000000'),
numpy.datetime64('2015-10-08T22:23:57.000000000'),
numpy.datetime64('2015-11-09T20:36:31.000000000'),
numpy.datetime64('2015-05-29T07:15:57.000000000'),
numpy.datetime64('2015-06-11T13:04:26.000000000'),
numpy.datetime64('2015-06-11T18:16:09.000000000'),
numpy.datetime64('2015-06-11T09:09:02.000000000'),
numpy.datetime64('2015-09-07T02:47:02.000000000'),
numpy.datetime64('2015-09-07T10:49:19.000000000'),
numpy.datetime64('2015-09-07T22:18:32.000000000'),
numpy.datetime64('2015-06-11T16:21:02.000000000'),
numpy.datetime64('2015-06-11T08:39:40.000000000'),
numpy.datetime64('2015-06-11T07:30:33.000000000'),
numpy.datetime64('2015-05-30T23:56:30.000000000'),
numpy.datetime64('2015-07-23T01:16:22.000000000'),
numpy.datetime64('2015-07-12T23:12:37.000000000'),
numpy.datetime64('2015-05-30T18:25:22.000000000'),
numpy.datetime64('2015-07-12T21:40:03.000000000'),
numpy.datetime64('2015-09-25T11:44:14.000000000'),
numpy.datetime64('2015-10-08T13:12:00.000000000'),
numpy.datetime64('2015-10-08T14:59:51.000000000'),
numpy.datetime64('2015-09-25T07:21:33.000000000'),
numpy.datetime64('2015-09-25T11:43:39.000000000'),
numpy.datetime64('2015-09-25T11:47:57.000000000'),
numpy.datetime64('2015-09-13T08:58:59.000000000'),
numpy.datetime64('2015-09-13T17:16:31.000000000'),
numpy.datetime64('2015-09-13T22:20:37.000000000'),
numpy.datetime64('2015-09-07T21:44:27.000000000'),
numpy.datetime64('2015-09-13T15:55:11.000000000'),
numpy.datetime64('2015-09-13T12:50:17.000000000'),
numpy.datetime64('2015-09-13T22:08:39.000000000'),
numpy.datetime64('2015-04-26T23:13:11.000000000'),
numpy.datetime64('2015-05-04T01:45:15.000000000'),
numpy.datetime64('2015-04-27T01:00:32.000000000'),
numpy.datetime64('2015-03-09T15:50:59.000000000'),
numpy.datetime64('2015-05-12T09:11:43.000000000'),
numpy.datetime64('2015-06-20T12:43:36.000000000'),
numpy.datetime64('2015-10-08T10:09:52.000000000'),
numpy.datetime64('2015-04-22T12:53:47.000000000'),
numpy.datetime64('2015-04-24T20:35:17.000000000'),
numpy.datetime64('2015-06-21T00:54:37.000000000'),
numpy.datetime64('2015-02-19T13:11:07.000000000'),
numpy.datetime64('2015-02-19T16:37:16.000000000'),
numpy.datetime64('2015-06-20T22:35:57.000000000'),
numpy.datetime64('2015-06-20T16:00:26.000000000'),
numpy.datetime64('2015-06-20T12:37:06.000000000'),
numpy.datetime64('2015-09-25T19:57:18.000000000'),
numpy.datetime64('2015-06-20T22:04:25.000000000'),
numpy.datetime64('2015-09-25T15:29:16.000000000'),
numpy.datetime64('2015-09-25T14:18:25.000000000'),
numpy.datetime64('2015-06-21T00:32:05.000000000'),
numpy.datetime64('2015-09-25T22:28:14.000000000'),
numpy.datetime64('2015-09-25T12:47:31.000000000'),
numpy.datetime64('2015-06-21T00:14:55.000000000'),
numpy.datetime64('2015-06-15T13:49:28.000000000'),
numpy.datetime64('2015-06-28T23:52:04.000000000'),
numpy.datetime64('2015-02-23T14:57:13.000000000'),
numpy.datetime64('2015-07-27T21:08:57.000000000'),
numpy.datetime64('2015-02-18T19:05:30.000000000'),
numpy.datetime64('2015-02-18T09:37:39.000000000'),
numpy.datetime64('2015-06-15T16:37:55.000000000'),
numpy.datetime64('2015-02-23T23:25:40.000000000'),
numpy.datetime64('2015-02-23T10:15:42.000000000'),
numpy.datetime64('2015-06-11T15:59:37.000000000'),
numpy.datetime64('2015-06-11T08:34:25.000000000'),
numpy.datetime64('2015-06-11T11:32:41.000000000'),
numpy.datetime64('2015-07-29T10:13:23.000000000'),
numpy.datetime64('2015-07-29T20:40:23.000000000'),
numpy.datetime64('2015-08-06T23:13:26.000000000'),
numpy.datetime64('2015-07-01T09:09:35.000000000'),
numpy.datetime64('2015-07-02T15:55:43.000000000'),
numpy.datetime64('2015-07-02T14:56:43.000000000'),
numpy.datetime64('2015-07-02T16:02:43.000000000'),
numpy.datetime64('2015-10-09T09:33:06.000000000'),
numpy.datetime64('2015-10-10T01:38:21.000000000'),
numpy.datetime64('2015-10-09T19:20:11.000000000'),
numpy.datetime64('2015-10-09T12:06:37.000000000'),
numpy.datetime64('2015-09-02T07:40:35.000000000'),
numpy.datetime64('2015-09-02T14:12:19.000000000'),
numpy.datetime64('2015-09-02T09:12:41.000000000'),
numpy.datetime64('2015-10-09T14:31:46.000000000'),
numpy.datetime64('2015-10-08T22:23:57.000000000'),
numpy.datetime64('2015-10-09T21:50:46.000000000'),
numpy.datetime64('2015-09-03T19:01:13.000000000'),
numpy.datetime64('2015-09-09T13:29:16.000000000'),
numpy.datetime64('2015-09-30T10:45:00.000000000'),
numpy.datetime64('2015-04-02T16:57:06.000000000'),
numpy.datetime64('2015-07-19T09:27:28.000000000'),
numpy.datetime64('2015-09-30T10:49:39.000000000'),
numpy.datetime64('2015-10-19T08:33:37.000000000'),
numpy.datetime64('2015-01-27T06:20:39.000000000'),
numpy.datetime64('2015-04-10T23:05:55.000000000'),
numpy.datetime64('2015-09-25T16:47:45.000000000'),
numpy.datetime64('2015-10-19T02:11:39.000000000'),
numpy.datetime64('2015-10-19T21:00:17.000000000'),
numpy.datetime64('2015-11-05T13:29:07.000000000'),
numpy.datetime64('2015-09-20T16:27:46.000000000'),
numpy.datetime64('2015-03-16T17:41:40.000000000'),
numpy.datetime64('2015-04-24T15:25:36.000000000'),
numpy.datetime64('2015-04-23T11:18:07.000000000'),
numpy.datetime64('2015-02-23T03:19:27.000000000'),
numpy.datetime64('2015-02-23T17:51:32.000000000'),
numpy.datetime64('2015-02-23T16:46:36.000000000'),
numpy.datetime64('2015-02-23T12:32:30.000000000'),
numpy.datetime64('2015-02-23T13:58:31.000000000'),
numpy.datetime64('2015-02-24T01:39:11.000000000'),
numpy.datetime64('2015-02-23T12:49:07.000000000'),
numpy.datetime64('2015-02-24T17:04:39.000000000'),
numpy.datetime64('2015-08-05T20:19:29.000000000'),
numpy.datetime64('2015-09-09T09:46:44.000000000'),
numpy.datetime64('2015-09-09T13:09:56.000000000'),
numpy.datetime64('2015-06-15T14:10:06.000000000'),
numpy.datetime64('2015-07-04T07:39:57.000000000'),
numpy.datetime64('2015-08-05T14:00:17.000000000'),
numpy.datetime64('2015-08-02T19:10:56.000000000'),
numpy.datetime64('2015-08-03T00:15:22.000000000'),
numpy.datetime64('2015-09-22T12:06:45.000000000'),
numpy.datetime64('2015-09-22T22:50:32.000000000'),
numpy.datetime64('2015-08-02T23:21:20.000000000'),
numpy.datetime64('2015-08-02T17:32:51.000000000'),
numpy.datetime64('2015-08-02T16:40:30.000000000'),
numpy.datetime64('2015-09-22T15:35:12.000000000'),
numpy.datetime64('2015-10-09T10:51:06.000000000'),
numpy.datetime64('2015-10-09T16:31:13.000000000'),
numpy.datetime64('2015-10-10T01:10:05.000000000'),
numpy.datetime64('2015-09-25T10:21:36.000000000'),
numpy.datetime64('2015-09-25T22:42:43.000000000'),
numpy.datetime64('2015-09-25T22:53:29.000000000'),
numpy.datetime64('2015-10-09T17:52:08.000000000'),
numpy.datetime64('2015-11-07T17:28:37.000000000'),
numpy.datetime64('2015-11-07T22:18:46.000000000'),
numpy.datetime64('2015-10-26T23:14:16.000000000'),
numpy.datetime64('2015-07-04T21:56:23.000000000'),
numpy.datetime64('2015-10-19T22:07:55.000000000'),
numpy.datetime64('2015-11-06T11:03:50.000000000'),
numpy.datetime64('2015-09-13T14:00:30.000000000'),
numpy.datetime64('2015-09-30T12:34:50.000000000'),
numpy.datetime64('2015-09-13T14:26:05.000000000'),
numpy.datetime64('2015-10-19T14:03:29.000000000'),
numpy.datetime64('2015-09-13T10:54:36.000000000'),
numpy.datetime64('2015-10-19T21:07:58.000000000'),
numpy.datetime64('2015-09-07T11:06:58.000000000'),
numpy.datetime64('2015-10-19T03:26:49.000000000'),
numpy.datetime64('2015-09-08T00:33:41.000000000'),
numpy.datetime64('2015-09-20T14:59:09.000000000'),
numpy.datetime64('2015-09-20T18:31:07.000000000'),
numpy.datetime64('2015-07-04T22:25:41.000000000'),
numpy.datetime64('2015-09-24T14:43:12.000000000'),
numpy.datetime64('2015-09-24T16:58:07.000000000'),
numpy.datetime64('2015-06-21T11:11:00.000000000'),
numpy.datetime64('2015-09-24T08:18:36.000000000'),
numpy.datetime64('2015-06-21T20:23:17.000000000'),
numpy.datetime64('2015-09-27T16:31:58.000000000'),
numpy.datetime64('2015-09-28T01:38:26.000000000'),
numpy.datetime64('2015-06-21T06:40:30.000000000'),
numpy.datetime64('2015-06-21T10:48:34.000000000'),
numpy.datetime64('2015-02-12T10:58:27.000000000'),
numpy.datetime64('2015-02-12T14:55:19.000000000'),
numpy.datetime64('2015-02-12T10:33:31.000000000'),
numpy.datetime64('2015-09-20T22:29:46.000000000'),
numpy.datetime64('2015-09-20T09:20:38.000000000'),
numpy.datetime64('2015-09-20T23:10:15.000000000'),
numpy.datetime64('2015-02-12T10:12:02.000000000'),
numpy.datetime64('2015-09-20T02:16:52.000000000'),
numpy.datetime64('2015-09-20T18:04:34.000000000'),
numpy.datetime64('2015-02-12T15:49:06.000000000'),
numpy.datetime64('2015-02-24T19:25:35.000000000'),
numpy.datetime64('2015-02-25T23:10:21.000000000'),
numpy.datetime64('2015-08-07T10:27:42.000000000'),
numpy.datetime64('2015-08-07T19:38:38.000000000'),
numpy.datetime64('2015-09-20T04:39:28.000000000'),
numpy.datetime64('2015-09-14T12:54:33.000000000'),
numpy.datetime64('2015-08-07T13:07:34.000000000'),
numpy.datetime64('2015-08-10T13:45:55.000000000'),
numpy.datetime64('2015-11-08T16:23:51.000000000'),
numpy.datetime64('2015-07-05T01:05:44.000000000'),
numpy.datetime64('2015-07-03T21:06:57.000000000'),
numpy.datetime64('2015-09-24T14:04:08.000000000'),
numpy.datetime64('2015-09-24T16:24:35.000000000'),
numpy.datetime64('2015-09-22T15:40:27.000000000'),
numpy.datetime64('2015-09-25T21:11:49.000000000'),
numpy.datetime64('2015-04-03T00:37:26.000000000'),
numpy.datetime64('2015-09-25T16:09:28.000000000'),
numpy.datetime64('2015-10-19T11:12:15.000000000'),
numpy.datetime64('2015-02-19T15:58:29.000000000'),
numpy.datetime64('2015-09-25T11:35:18.000000000'),
numpy.datetime64('2015-11-08T14:57:16.000000000'),
numpy.datetime64('2015-10-19T06:49:12.000000000'),
numpy.datetime64('2015-10-19T06:25:15.000000000'),
numpy.datetime64('2015-10-19T13:44:46.000000000'),
numpy.datetime64('2015-09-09T21:17:32.000000000'),
numpy.datetime64('2015-09-09T23:34:02.000000000'),
numpy.datetime64('2015-08-12T11:31:47.000000000'),
numpy.datetime64('2015-10-19T23:16:13.000000000'),
numpy.datetime64('2015-09-20T22:56:10.000000000'),
numpy.datetime64('2015-04-18T12:55:51.000000000'),
numpy.datetime64('2015-02-19T11:54:17.000000000'),
numpy.datetime64('2015-10-10T01:24:53.000000000'),
numpy.datetime64('2015-02-19T11:32:16.000000000'),
numpy.datetime64('2015-09-29T13:05:25.000000000'),
numpy.datetime64('2015-07-03T22:52:37.000000000'),
numpy.datetime64('2015-07-03T13:43:46.000000000'),
numpy.datetime64('2015-08-01T08:55:28.000000000'),
numpy.datetime64('2015-06-21T07:11:35.000000000'),
numpy.datetime64('2015-08-12T14:30:08.000000000'),
numpy.datetime64('2015-08-12T16:24:48.000000000'),
numpy.datetime64('2015-06-21T18:29:03.000000000'),
numpy.datetime64('2015-06-21T21:40:54.000000000'),
numpy.datetime64('2015-06-21T22:18:42.000000000'),
numpy.datetime64('2015-06-06T13:33:20.000000000'),
numpy.datetime64('2015-05-21T17:28:00.000000000'),
numpy.datetime64('2015-09-15T17:13:21.000000000'),
numpy.datetime64('2015-09-15T12:12:55.000000000'),
numpy.datetime64('2015-09-15T19:27:12.000000000'),
numpy.datetime64('2015-09-15T07:22:35.000000000'),
numpy.datetime64('2015-07-03T20:52:06.000000000'),
numpy.datetime64('2015-07-03T12:58:32.000000000'),
numpy.datetime64('2015-09-15T18:47:18.000000000'),
numpy.datetime64('2015-09-15T11:26:58.000000000'),
numpy.datetime64('2015-07-04T01:25:29.000000000'),
numpy.datetime64('2015-07-03T21:35:32.000000000'),
numpy.datetime64('2015-07-03T23:09:16.000000000'),
numpy.datetime64('2015-07-03T20:11:31.000000000'),
numpy.datetime64('2015-02-25T14:46:11.000000000'),
numpy.datetime64('2015-11-28T19:51:34.000000000'),
numpy.datetime64('2015-09-14T07:53:00.000000000'),
numpy.datetime64('2015-09-15T10:08:30.000000000'),
numpy.datetime64('2015-09-14T10:47:07.000000000'),
numpy.datetime64('2015-02-25T18:14:33.000000000'),
numpy.datetime64('2015-02-26T02:07:08.000000000'),
numpy.datetime64('2015-09-25T13:28:53.000000000'),
numpy.datetime64('2015-09-25T23:21:18.000000000'),
numpy.datetime64('2015-11-08T13:17:30.000000000'),
numpy.datetime64('2015-09-25T13:11:50.000000000'),
numpy.datetime64('2015-09-25T10:29:24.000000000'),
numpy.datetime64('2015-09-25T13:14:32.000000000'),
numpy.datetime64('2015-09-25T22:27:00.000000000'),
numpy.datetime64('2015-10-24T09:49:16.000000000'),
numpy.datetime64('2015-11-28T12:05:13.000000000'),
numpy.datetime64('2015-09-13T08:53:43.000000000'),
numpy.datetime64('2015-11-08T08:03:48.000000000'),
numpy.datetime64('2015-11-28T11:38:06.000000000'),
numpy.datetime64('2015-11-08T10:19:12.000000000'),
numpy.datetime64('2015-09-13T04:48:09.000000000'),
numpy.datetime64('2015-07-03T22:17:26.000000000'),
numpy.datetime64('2015-07-03T03:56:33.000000000'),
numpy.datetime64('2015-07-04T02:16:31.000000000'),
numpy.datetime64('2015-10-10T15:14:24.000000000'),
numpy.datetime64('2015-11-28T12:45:49.000000000'),
numpy.datetime64('2015-09-10T01:35:05.000000000'),
numpy.datetime64('2015-09-09T15:25:45.000000000'),
numpy.datetime64('2015-09-13T02:54:14.000000000'),
numpy.datetime64('2015-09-25T10:13:24.000000000'),
numpy.datetime64('2015-09-25T06:35:06.000000000'),
numpy.datetime64('2015-10-09T13:08:15.000000000'),
numpy.datetime64('2015-11-28T18:46:53.000000000'),
numpy.datetime64('2015-09-25T23:50:19.000000000'),
numpy.datetime64('2015-09-14T23:08:19.000000000'),
numpy.datetime64('2015-10-11T01:39:05.000000000'),
numpy.datetime64('2015-10-10T16:36:41.000000000'),
numpy.datetime64('2015-09-14T17:16:05.000000000'),
numpy.datetime64('2015-07-03T11:09:17.000000000'),
numpy.datetime64('2015-04-18T04:03:10.000000000'),
numpy.datetime64('2015-04-15T10:45:50.000000000'),
numpy.datetime64('2015-07-27T09:26:06.000000000'),
numpy.datetime64('2015-09-20T02:37:34.000000000'),
numpy.datetime64('2015-09-20T16:10:16.000000000'),
numpy.datetime64('2015-09-20T08:11:18.000000000'),
numpy.datetime64('2015-09-20T19:35:57.000000000'),
numpy.datetime64('2015-10-11T01:43:01.000000000'),
numpy.datetime64('2015-06-08T06:24:06.000000000'),
numpy.datetime64('2015-10-09T18:18:28.000000000'),
numpy.datetime64('2015-09-20T19:40:07.000000000'),
numpy.datetime64('2015-09-25T12:52:40.000000000'),
numpy.datetime64('2015-10-09T21:12:38.000000000'),
numpy.datetime64('2015-10-09T14:41:16.000000000'),
numpy.datetime64('2015-09-22T10:59:39.000000000'),
numpy.datetime64('2015-09-22T19:31:45.000000000'),
numpy.datetime64('2015-09-22T18:42:16.000000000'),
numpy.datetime64('2015-02-25T15:57:19.000000000'),
numpy.datetime64('2015-02-25T13:36:11.000000000'),
numpy.datetime64('2015-09-22T14:37:16.000000000'),
numpy.datetime64('2015-09-25T05:27:30.000000000'),
numpy.datetime64('2015-11-03T18:56:00.000000000'),
numpy.datetime64('2015-10-22T13:46:42.000000000'),
numpy.datetime64('2015-09-14T19:13:14.000000000'),
numpy.datetime64('2015-09-25T13:28:18.000000000'),
numpy.datetime64('2015-09-14T14:33:45.000000000'),
numpy.datetime64('2015-09-15T12:42:57.000000000'),
numpy.datetime64('2015-07-25T09:33:55.000000000'),
numpy.datetime64('2015-07-25T07:53:31.000000000'),
numpy.datetime64('2015-07-25T19:42:25.000000000'),
numpy.datetime64('2015-07-27T11:39:45.000000000'),
numpy.datetime64('2015-09-15T14:10:14.000000000'),
numpy.datetime64('2015-07-27T16:41:07.000000000'),
numpy.datetime64('2015-07-27T14:55:59.000000000'),
numpy.datetime64('2015-09-15T22:21:13.000000000'),
numpy.datetime64('2015-09-14T13:47:10.000000000'),
numpy.datetime64('2015-07-29T14:32:03.000000000'),
numpy.datetime64('2015-09-15T09:09:33.000000000'),
numpy.datetime64('2015-09-15T11:16:47.000000000'),
numpy.datetime64('2015-05-04T18:41:17.000000000'),
numpy.datetime64('2015-02-11T12:39:41.000000000'),
numpy.datetime64('2015-05-04T12:48:20.000000000'),
numpy.datetime64('2015-05-04T21:55:20.000000000'),
numpy.datetime64('2015-05-04T08:42:37.000000000'),
numpy.datetime64('2015-02-21T14:22:16.000000000'),
numpy.datetime64('2015-02-04T13:53:54.000000000'),
numpy.datetime64('2015-02-11T11:28:19.000000000'),
numpy.datetime64('2015-02-21T23:28:31.000000000'),
numpy.datetime64('2015-09-25T13:01:37.000000000'),
numpy.datetime64('2015-09-25T23:27:30.000000000'),
numpy.datetime64('2015-05-29T09:06:51.000000000'),
numpy.datetime64('2015-02-26T10:00:22.000000000'),
numpy.datetime64('2015-03-01T12:43:32.000000000'),
numpy.datetime64('2015-03-03T12:23:58.000000000'),
numpy.datetime64('2015-02-07T15:05:00.000000000'),
numpy.datetime64('2015-02-07T02:22:55.000000000'),
numpy.datetime64('2015-09-26T02:09:45.000000000'),
numpy.datetime64('2015-09-13T09:45:33.000000000'),
numpy.datetime64('2015-09-20T15:22:27.000000000'),
numpy.datetime64('2015-09-20T23:21:48.000000000'),
numpy.datetime64('2015-11-28T02:38:15.000000000'),
numpy.datetime64('2015-09-20T16:14:32.000000000'),
numpy.datetime64('2015-09-20T14:03:46.000000000'),
numpy.datetime64('2015-11-06T12:28:30.000000000'),
numpy.datetime64('2015-09-14T20:31:37.000000000'),
numpy.datetime64('2015-09-15T14:26:16.000000000'),
numpy.datetime64('2015-08-06T08:05:09.000000000'),
numpy.datetime64('2015-08-06T16:46:47.000000000'),
numpy.datetime64('2015-09-15T20:31:02.000000000'),
numpy.datetime64('2015-09-15T09:38:38.000000000'),
numpy.datetime64('2015-08-06T13:34:34.000000000'),
numpy.datetime64('2015-08-06T10:15:20.000000000'),
numpy.datetime64('2015-09-15T11:02:22.000000000'),
numpy.datetime64('2015-05-10T16:57:44.000000000'),
numpy.datetime64('2015-05-29T13:50:51.000000000'),
numpy.datetime64('2015-09-15T23:07:50.000000000'),
numpy.datetime64('2015-09-25T22:35:24.000000000'),
numpy.datetime64('2015-09-26T02:08:39.000000000'),
numpy.datetime64('2015-02-19T20:31:07.000000000'),
numpy.datetime64('2015-09-26T00:48:28.000000000'),
numpy.datetime64('2015-09-26T12:54:56.000000000'),
numpy.datetime64('2015-09-26T14:19:16.000000000'),
numpy.datetime64('2015-09-27T00:40:17.000000000'),
numpy.datetime64('2015-09-15T22:18:45.000000000'),
numpy.datetime64('2015-10-16T09:20:10.000000000'),
numpy.datetime64('2015-09-15T22:25:50.000000000'),
numpy.datetime64('2015-09-15T22:19:09.000000000'),
numpy.datetime64('2015-09-07T11:16:40.000000000'),
numpy.datetime64('2015-09-07T11:59:30.000000000'),
numpy.datetime64('2015-11-05T14:28:24.000000000'),
numpy.datetime64('2015-09-07T09:10:27.000000000'),
numpy.datetime64('2015-09-07T22:17:41.000000000'),
numpy.datetime64('2015-02-07T10:48:10.000000000'),
numpy.datetime64('2015-03-02T17:04:18.000000000'),
numpy.datetime64('2015-02-04T09:43:46.000000000'),
numpy.datetime64('2015-09-20T13:41:07.000000000'),
numpy.datetime64('2015-09-20T03:52:33.000000000'),
numpy.datetime64('2015-09-25T15:19:10.000000000'),
numpy.datetime64('2015-02-19T08:56:37.000000000'),
numpy.datetime64('2015-09-25T06:16:49.000000000'),
numpy.datetime64('2015-09-25T11:11:12.000000000'),
numpy.datetime64('2015-05-29T07:42:26.000000000'),
numpy.datetime64('2015-05-29T11:29:06.000000000'),
numpy.datetime64('2015-09-25T20:07:15.000000000'),
numpy.datetime64('2015-09-15T13:03:44.000000000'),
numpy.datetime64('2015-03-03T20:22:17.000000000'),
numpy.datetime64('2015-03-03T07:43:10.000000000'),
numpy.datetime64('2015-10-16T23:33:20.000000000'),
numpy.datetime64('2015-09-25T21:38:05.000000000'),
numpy.datetime64('2015-09-13T19:14:34.000000000'),
numpy.datetime64('2015-10-01T12:48:30.000000000'),
numpy.datetime64('2015-10-16T04:57:22.000000000'),
numpy.datetime64('2015-10-16T16:22:57.000000000'),
numpy.datetime64('2015-03-03T07:39:42.000000000'),
numpy.datetime64('2015-02-08T14:21:38.000000000'),
numpy.datetime64('2015-11-09T13:31:54.000000000'),
numpy.datetime64('2015-09-26T00:24:24.000000000'),
numpy.datetime64('2015-10-16T16:39:34.000000000'),
numpy.datetime64('2015-09-25T11:11:09.000000000'),
numpy.datetime64('2015-02-10T14:36:50.000000000'),
numpy.datetime64('2015-02-10T09:34:31.000000000'),
numpy.datetime64('2015-02-10T19:46:16.000000000'),
numpy.datetime64('2015-09-25T08:46:19.000000000'),
numpy.datetime64('2015-05-11T16:40:48.000000000'),
numpy.datetime64('2015-05-11T22:11:46.000000000'),
numpy.datetime64('2015-02-19T20:48:34.000000000'),
numpy.datetime64('2015-09-20T06:00:50.000000000'),
numpy.datetime64('2015-09-20T21:36:37.000000000'),
numpy.datetime64('2015-05-11T19:10:00.000000000'),
numpy.datetime64('2015-09-21T02:13:02.000000000'),
numpy.datetime64('2015-09-25T15:47:51.000000000'),
numpy.datetime64('2015-09-25T17:24:24.000000000'),
numpy.datetime64('2015-09-14T13:26:41.000000000'),
numpy.datetime64('2015-09-14T10:57:13.000000000'),
numpy.datetime64('2015-09-15T09:21:20.000000000'),
numpy.datetime64('2015-11-28T08:13:02.000000000'),
numpy.datetime64('2015-09-15T22:26:44.000000000'),
numpy.datetime64('2015-09-15T15:31:11.000000000'),
numpy.datetime64('2015-09-15T14:35:48.000000000'),
numpy.datetime64('2015-07-23T00:25:40.000000000'),
numpy.datetime64('2015-09-25T09:03:04.000000000'),
numpy.datetime64('2015-11-28T12:03:41.000000000'),
numpy.datetime64('2015-09-25T07:58:28.000000000'),
numpy.datetime64('2015-09-25T17:06:27.000000000'),
numpy.datetime64('2015-09-25T13:34:56.000000000'),
numpy.datetime64('2015-10-11T01:26:47.000000000'),
numpy.datetime64('2015-09-25T09:33:55.000000000'),
numpy.datetime64('2015-09-25T13:34:15.000000000'),
numpy.datetime64('2015-07-01T19:48:11.000000000'),
numpy.datetime64('2015-10-09T14:03:22.000000000'),
numpy.datetime64('2015-09-25T10:00:11.000000000'),
numpy.datetime64('2015-09-25T14:47:09.000000000'),
numpy.datetime64('2015-10-09T11:50:30.000000000'),
numpy.datetime64('2015-03-03T15:05:13.000000000'),
numpy.datetime64('2015-03-03T10:49:03.000000000'),
numpy.datetime64('2015-03-03T16:46:09.000000000'),
numpy.datetime64('2015-03-03T16:09:05.000000000'),
numpy.datetime64('2015-03-03T17:30:23.000000000'),
numpy.datetime64('2015-03-03T11:52:55.000000000'),
numpy.datetime64('2015-03-03T11:36:44.000000000'),
numpy.datetime64('2015-03-01T22:55:58.000000000'),
numpy.datetime64('2015-03-01T12:40:10.000000000'),
numpy.datetime64('2015-03-01T14:20:24.000000000'),
numpy.datetime64('2015-05-11T12:45:14.000000000'),
numpy.datetime64('2015-05-08T15:12:09.000000000'),
numpy.datetime64('2015-09-20T21:08:21.000000000'),
numpy.datetime64('2015-05-30T01:54:01.000000000'),
numpy.datetime64('2015-11-08T20:09:10.000000000'),
numpy.datetime64('2015-05-07T19:10:49.000000000'),
numpy.datetime64('2015-05-08T01:25:10.000000000'),
numpy.datetime64('2015-05-08T19:52:24.000000000'),
numpy.datetime64('2015-09-13T12:54:48.000000000'),
numpy.datetime64('2015-09-13T14:35:25.000000000'),
numpy.datetime64('2015-09-20T20:06:05.000000000'),
numpy.datetime64('2015-09-20T11:26:38.000000000'),
numpy.datetime64('2015-09-20T14:05:41.000000000'),
numpy.datetime64('2015-09-07T19:43:39.000000000'),
numpy.datetime64('2015-09-07T22:40:16.000000000'),
numpy.datetime64('2015-11-28T17:55:52.000000000'),
numpy.datetime64('2015-11-08T17:42:32.000000000'),
numpy.datetime64('2015-09-25T08:02:49.000000000'),
numpy.datetime64('2015-09-25T15:10:14.000000000'),
numpy.datetime64('2015-10-16T13:27:02.000000000'),
numpy.datetime64('2015-10-16T07:17:17.000000000'),
numpy.datetime64('2015-10-16T10:28:27.000000000'),
numpy.datetime64('2015-11-08T10:57:20.000000000'),
numpy.datetime64('2015-06-23T11:38:33.000000000'),
numpy.datetime64('2015-09-14T11:31:49.000000000'),
numpy.datetime64('2015-09-14T21:07:08.000000000'),
numpy.datetime64('2015-11-02T15:56:20.000000000'),
numpy.datetime64('2015-10-10T22:34:29.000000000'),
numpy.datetime64('2015-09-15T12:49:34.000000000'),
numpy.datetime64('2015-09-15T13:41:32.000000000'),
numpy.datetime64('2015-09-15T11:17:43.000000000'),
numpy.datetime64('2015-11-28T10:01:53.000000000'),
numpy.datetime64('2015-10-23T01:21:56.000000000'),
numpy.datetime64('2015-06-25T12:00:18.000000000'),
numpy.datetime64('2015-11-08T00:39:16.000000000'),
numpy.datetime64('2015-03-01T12:08:36.000000000'),
numpy.datetime64('2015-03-01T21:35:05.000000000'),
numpy.datetime64('2015-03-01T22:59:15.000000000'),
numpy.datetime64('2015-02-07T14:08:47.000000000'),
numpy.datetime64('2015-02-07T22:40:57.000000000'),
numpy.datetime64('2015-02-07T15:00:09.000000000'),
numpy.datetime64('2015-09-14T23:33:26.000000000'),
numpy.datetime64('2015-02-17T12:29:45.000000000'),
numpy.datetime64('2015-02-26T12:36:17.000000000'),
numpy.datetime64('2015-02-26T23:39:30.000000000'),
numpy.datetime64('2015-09-14T23:26:39.000000000'),
numpy.datetime64('2015-02-17T14:54:43.000000000'),
numpy.datetime64('2015-02-17T13:44:44.000000000'),
numpy.datetime64('2015-09-14T07:07:00.000000000'),
numpy.datetime64('2015-09-14T22:06:28.000000000'),
numpy.datetime64('2015-09-15T20:13:16.000000000'),
numpy.datetime64('2015-05-15T10:48:15.000000000'),
numpy.datetime64('2015-05-15T11:32:45.000000000'),
numpy.datetime64('2015-05-15T10:30:29.000000000'),
numpy.datetime64('2015-05-15T10:59:16.000000000'),
numpy.datetime64('2015-09-25T14:43:56.000000000'),
numpy.datetime64('2015-05-15T11:08:29.000000000'),
numpy.datetime64('2015-05-21T15:36:03.000000000'),
numpy.datetime64('2015-05-21T11:18:00.000000000'),
numpy.datetime64('2015-07-29T16:31:54.000000000'),
numpy.datetime64('2015-11-04T21:13:25.000000000'),
numpy.datetime64('2015-06-25T10:29:10.000000000'),
numpy.datetime64('2015-10-03T11:47:05.000000000'),
numpy.datetime64('2015-11-03T20:51:42.000000000'),
numpy.datetime64('2015-07-29T23:34:43.000000000'),
numpy.datetime64('2015-09-15T22:10:37.000000000'),
numpy.datetime64('2015-08-03T14:58:26.000000000'),
numpy.datetime64('2015-08-03T13:45:12.000000000'),
numpy.datetime64('2015-08-03T02:48:10.000000000'),
numpy.datetime64('2015-11-04T20:39:56.000000000'),
numpy.datetime64('2015-09-15T12:07:30.000000000'),
numpy.datetime64('2015-09-15T10:16:45.000000000'),
numpy.datetime64('2015-07-29T11:09:49.000000000'),
numpy.datetime64('2015-08-04T01:57:13.000000000'),
numpy.datetime64('2015-08-03T07:24:11.000000000'),
numpy.datetime64('2015-08-12T15:21:27.000000000'),
numpy.datetime64('2015-08-06T22:16:34.000000000'),
numpy.datetime64('2015-08-12T11:14:12.000000000'),
numpy.datetime64('2015-08-12T07:55:56.000000000'),
numpy.datetime64('2015-08-06T19:48:00.000000000'),
numpy.datetime64('2015-08-06T17:36:32.000000000'),
numpy.datetime64('2015-09-23T17:25:32.000000000'),
numpy.datetime64('2015-10-16T15:59:21.000000000'),
numpy.datetime64('2015-09-15T21:20:03.000000000'),
numpy.datetime64('2015-06-25T12:29:21.000000000'),
numpy.datetime64('2015-11-08T13:55:41.000000000'),
numpy.datetime64('2015-09-15T08:22:59.000000000'),
numpy.datetime64('2015-06-23T15:07:30.000000000'),
numpy.datetime64('2015-09-15T22:08:41.000000000'),
numpy.datetime64('2015-06-13T16:37:53.000000000'),
numpy.datetime64('2015-06-13T04:33:24.000000000'),
numpy.datetime64('2015-06-13T14:52:24.000000000'),
numpy.datetime64('2015-09-15T18:02:44.000000000'),
numpy.datetime64('2015-09-15T19:34:19.000000000'),
numpy.datetime64('2015-09-25T17:23:38.000000000'),
numpy.datetime64('2015-11-28T03:58:58.000000000'),
numpy.datetime64('2015-11-09T07:42:27.000000000'),
numpy.datetime64('2015-09-26T01:11:56.000000000'),
numpy.datetime64('2015-02-17T11:55:08.000000000'),
numpy.datetime64('2015-09-25T07:06:42.000000000'),
numpy.datetime64('2015-09-25T15:11:55.000000000'),
numpy.datetime64('2015-10-16T23:54:38.000000000'),
numpy.datetime64('2015-11-08T10:22:24.000000000'),
numpy.datetime64('2015-02-17T13:23:58.000000000'),
numpy.datetime64('2015-09-26T17:17:34.000000000'),
numpy.datetime64('2015-02-17T23:06:02.000000000'),
numpy.datetime64('2015-02-04T09:33:38.000000000'),
numpy.datetime64('2015-09-26T16:35:15.000000000'),
numpy.datetime64('2015-09-26T14:30:09.000000000'),
numpy.datetime64('2015-02-04T15:45:36.000000000'),
numpy.datetime64('2015-09-26T15:01:02.000000000'),
numpy.datetime64('2015-09-26T20:30:32.000000000'),
numpy.datetime64('2015-02-04T14:10:55.000000000'),
numpy.datetime64('2015-11-03T11:56:07.000000000'),
numpy.datetime64('2015-02-15T00:55:30.000000000'),
numpy.datetime64('2015-06-24T00:00:00.000000000'),
numpy.datetime64('2015-07-18T08:19:47.000000000'),
numpy.datetime64('2015-07-23T11:08:19.000000000'),
numpy.datetime64('2015-06-25T14:39:54.000000000'),
numpy.datetime64('2015-06-25T20:21:46.000000000'),
numpy.datetime64('2015-06-25T23:29:26.000000000'),
numpy.datetime64('2015-06-25T23:39:48.000000000'),
numpy.datetime64('2015-06-24T18:41:00.000000000'),
numpy.datetime64('2015-06-24T15:24:39.000000000'),
numpy.datetime64('2015-06-24T22:36:01.000000000'),
numpy.datetime64('2015-04-28T08:02:28.000000000'),
numpy.datetime64('2015-05-23T14:37:09.000000000'),
numpy.datetime64('2015-08-06T11:43:41.000000000'),
numpy.datetime64('2015-08-06T14:08:01.000000000'),
numpy.datetime64('2015-08-07T02:16:40.000000000'),
numpy.datetime64('2015-08-08T00:52:03.000000000'),
numpy.datetime64('2015-08-07T22:45:41.000000000'),
numpy.datetime64('2015-08-07T15:42:05.000000000'),
numpy.datetime64('2015-08-07T16:31:50.000000000'),
numpy.datetime64('2015-08-07T11:45:27.000000000'),
numpy.datetime64('2015-08-02T16:19:13.000000000'),
numpy.datetime64('2015-06-23T13:18:16.000000000'),
numpy.datetime64('2015-06-26T17:41:27.000000000'),
numpy.datetime64('2015-06-26T04:47:22.000000000'),
numpy.datetime64('2015-09-25T10:44:55.000000000'),
numpy.datetime64('2015-09-25T22:57:09.000000000'),
numpy.datetime64('2015-06-24T09:36:45.000000000'),
numpy.datetime64('2015-06-26T22:55:40.000000000'),
numpy.datetime64('2015-06-26T18:17:45.000000000'),
numpy.datetime64('2015-12-21T20:20:17.000000000'),
numpy.datetime64('2015-09-25T22:59:04.000000000'),
numpy.datetime64('2015-09-26T00:01:38.000000000'),
numpy.datetime64('2015-09-26T00:44:10.000000000'),
numpy.datetime64('2015-09-25T10:24:49.000000000'),
numpy.datetime64('2015-09-26T01:37:37.000000000'),
numpy.datetime64('2015-09-26T01:16:01.000000000'),
numpy.datetime64('2015-09-25T13:31:02.000000000'),
numpy.datetime64('2015-09-26T13:36:56.000000000'),
numpy.datetime64('2015-09-25T00:44:56.000000000'),
numpy.datetime64('2015-06-24T19:02:15.000000000'),
numpy.datetime64('2015-07-20T23:52:43.000000000'),
numpy.datetime64('2015-10-20T06:53:23.000000000'),
numpy.datetime64('2015-06-24T17:52:01.000000000'),
numpy.datetime64('2015-06-09T12:59:09.000000000'),
numpy.datetime64('2015-06-09T03:49:51.000000000'),
numpy.datetime64('2015-06-09T07:57:03.000000000'),
numpy.datetime64('2015-11-08T10:10:44.000000000'),
numpy.datetime64('2015-06-09T12:36:30.000000000'),
numpy.datetime64('2015-05-02T11:06:06.000000000'),
numpy.datetime64('2015-09-18T21:30:09.000000000'),
numpy.datetime64('2015-02-17T11:13:07.000000000'),
numpy.datetime64('2015-02-17T09:36:24.000000000'),
numpy.datetime64('2015-02-04T09:02:04.000000000'),
numpy.datetime64('2015-06-24T21:47:27.000000000'),
numpy.datetime64('2015-06-24T14:45:17.000000000'),
numpy.datetime64('2015-06-25T18:21:49.000000000'),
numpy.datetime64('2015-06-25T20:09:56.000000000'),
numpy.datetime64('2015-06-25T21:35:56.000000000'),
numpy.datetime64('2015-06-04T18:01:46.000000000'),
numpy.datetime64('2015-04-26T22:52:26.000000000'),
numpy.datetime64('2015-05-12T18:25:29.000000000'),
numpy.datetime64('2015-05-12T20:48:44.000000000'),
numpy.datetime64('2015-05-13T08:39:06.000000000'),
numpy.datetime64('2015-04-22T15:24:35.000000000'),
numpy.datetime64('2015-09-25T08:35:47.000000000'),
numpy.datetime64('2015-09-08T14:38:05.000000000'),
numpy.datetime64('2015-09-23T09:04:04.000000000'),
numpy.datetime64('2015-10-02T15:51:54.000000000'),
numpy.datetime64('2015-10-21T15:01:17.000000000'),
numpy.datetime64('2015-11-06T11:29:36.000000000'),
numpy.datetime64('2015-06-24T13:42:09.000000000'),
numpy.datetime64('2015-06-25T00:10:52.000000000'),
numpy.datetime64('2015-06-24T11:12:51.000000000'),
numpy.datetime64('2015-06-24T08:23:01.000000000'),
numpy.datetime64('2015-11-28T14:49:54.000000000'),
numpy.datetime64('2015-10-20T12:59:04.000000000'),
numpy.datetime64('2015-10-20T08:33:56.000000000'),
numpy.datetime64('2015-09-25T14:23:03.000000000'),
numpy.datetime64('2015-02-18T23:46:00.000000000'),
numpy.datetime64('2015-02-18T16:23:05.000000000'),
numpy.datetime64('2015-11-06T20:44:09.000000000'),
numpy.datetime64('2015-09-25T16:55:09.000000000'),
numpy.datetime64('2015-02-19T15:55:37.000000000'),
numpy.datetime64('2015-02-19T14:23:56.000000000'),
numpy.datetime64('2015-10-22T12:18:40.000000000'),
numpy.datetime64('2015-10-03T17:09:01.000000000'),
numpy.datetime64('2015-10-24T10:42:09.000000000'),
numpy.datetime64('2015-11-08T16:00:40.000000000'),
numpy.datetime64('2015-12-21T00:00:00.000000000'),
numpy.datetime64('2015-04-22T13:47:07.000000000'),
numpy.datetime64('2015-04-22T22:20:34.000000000'),
numpy.datetime64('2015-04-22T13:20:34.000000000'),
numpy.datetime64('2015-06-24T11:25:31.000000000'),
numpy.datetime64('2015-04-27T15:07:14.000000000'),
numpy.datetime64('2015-03-14T00:45:06.000000000'),
numpy.datetime64('2015-10-20T03:35:57.000000000'),
numpy.datetime64('2015-10-20T22:09:55.000000000'),
numpy.datetime64('2015-01-03T07:33:34.000000000'),
numpy.datetime64('2015-09-23T13:33:40.000000000'),
numpy.datetime64('2015-12-26T20:39:15.000000000'),
numpy.datetime64('2015-12-21T11:08:08.000000000'),
numpy.datetime64('2015-02-11T10:07:05.000000000'),
numpy.datetime64('2015-02-11T13:26:05.000000000'),
numpy.datetime64('2015-02-11T18:16:20.000000000'),
numpy.datetime64('2015-10-20T23:06:49.000000000'),
numpy.datetime64('2015-09-25T06:57:12.000000000'),
numpy.datetime64('2015-02-11T07:34:36.000000000'),
numpy.datetime64('2015-02-11T08:57:15.000000000'),
numpy.datetime64('2015-11-04T15:58:22.000000000'),
numpy.datetime64('2015-02-19T10:46:01.000000000'),
numpy.datetime64('2015-02-19T10:28:42.000000000'),
numpy.datetime64('2015-02-21T12:06:02.000000000'),
numpy.datetime64('2015-10-20T15:01:38.000000000'),
numpy.datetime64('2015-04-24T11:42:53.000000000'),
numpy.datetime64('2015-04-27T16:55:10.000000000'),
numpy.datetime64('2015-04-27T12:19:44.000000000'),
numpy.datetime64('2015-04-27T15:53:17.000000000'),
numpy.datetime64('2015-08-12T16:35:34.000000000'),
numpy.datetime64('2015-09-25T14:57:08.000000000'),
numpy.datetime64('2015-06-09T15:22:44.000000000'),
numpy.datetime64('2015-09-01T14:03:41.000000000'),
numpy.datetime64('2015-04-23T09:20:04.000000000'),
numpy.datetime64('2015-04-23T11:07:03.000000000'),
numpy.datetime64('2015-04-23T18:41:34.000000000'),
numpy.datetime64('2015-04-23T13:54:21.000000000'),
numpy.datetime64('2015-04-23T13:43:01.000000000'),
numpy.datetime64('2015-11-09T10:30:47.000000000'),
numpy.datetime64('2015-05-10T17:23:47.000000000'),
numpy.datetime64('2015-11-08T16:40:19.000000000'),
numpy.datetime64('2015-10-03T12:25:21.000000000'),
numpy.datetime64('2015-10-02T15:00:36.000000000'),
numpy.datetime64('2015-09-19T00:33:37.000000000'),
numpy.datetime64('2015-09-18T10:54:05.000000000'),
numpy.datetime64('2015-06-09T17:50:51.000000000'),
numpy.datetime64('2015-06-09T12:44:22.000000000'),
numpy.datetime64('2015-06-09T18:16:58.000000000'),
numpy.datetime64('2015-06-09T14:00:39.000000000'),
numpy.datetime64('2015-07-22T15:18:47.000000000'),
numpy.datetime64('2015-07-22T21:38:07.000000000'),
numpy.datetime64('2015-07-22T11:36:20.000000000'),
numpy.datetime64('2015-07-25T23:27:58.000000000'),
numpy.datetime64('2015-07-25T23:03:50.000000000'),
numpy.datetime64('2015-07-25T21:19:04.000000000'),
numpy.datetime64('2015-07-27T12:38:34.000000000'),
numpy.datetime64('2015-10-19T12:05:54.000000000'),
numpy.datetime64('2015-11-04T15:05:25.000000000'),
numpy.datetime64('2015-05-10T23:29:47.000000000'),
numpy.datetime64('2015-05-10T16:53:38.000000000'),
numpy.datetime64('2015-05-04T14:42:57.000000000'),
numpy.datetime64('2015-05-04T04:31:42.000000000'),
numpy.datetime64('2015-05-04T07:45:39.000000000'),
numpy.datetime64('2015-05-04T17:58:19.000000000'),
numpy.datetime64('2015-09-11T11:53:51.000000000'),
numpy.datetime64('2015-06-09T23:18:33.000000000'),
numpy.datetime64('2015-05-04T07:25:30.000000000'),
numpy.datetime64('2015-09-11T14:32:46.000000000'),
numpy.datetime64('2015-05-04T19:28:32.000000000'),
numpy.datetime64('2015-06-28T09:31:21.000000000'),
numpy.datetime64('2015-06-28T04:08:59.000000000'),
numpy.datetime64('2015-06-28T10:08:58.000000000'),
numpy.datetime64('2015-06-28T04:46:31.000000000'),
numpy.datetime64('2015-07-01T12:03:47.000000000'),
numpy.datetime64('2015-09-18T10:10:09.000000000'),
numpy.datetime64('2015-10-04T15:39:08.000000000'),
numpy.datetime64('2015-10-04T12:32:14.000000000'),
numpy.datetime64('2015-10-04T03:28:43.000000000'),
numpy.datetime64('2015-07-28T08:32:45.000000000'),
numpy.datetime64('2015-07-28T14:35:24.000000000'),
numpy.datetime64('2015-07-28T20:51:06.000000000'),
numpy.datetime64('2015-07-29T15:45:00.000000000'),
numpy.datetime64('2015-09-21T13:53:41.000000000'),
numpy.datetime64('2015-07-29T11:13:22.000000000'),
numpy.datetime64('2015-09-25T22:24:21.000000000'),
numpy.datetime64('2015-09-13T04:08:52.000000000'),
numpy.datetime64('2015-09-14T01:19:39.000000000'),
numpy.datetime64('2015-09-13T16:31:09.000000000'),
numpy.datetime64('2015-09-05T15:41:13.000000000'),
numpy.datetime64('2015-09-05T15:16:02.000000000'),
numpy.datetime64('2015-09-05T09:06:13.000000000'),
numpy.datetime64('2015-06-09T14:41:51.000000000'),
numpy.datetime64('2015-10-03T13:57:56.000000000'),
numpy.datetime64('2015-05-11T01:12:28.000000000'),
numpy.datetime64('2015-07-01T21:09:29.000000000'),
numpy.datetime64('2015-10-03T10:58:56.000000000'),
numpy.datetime64('2015-07-01T19:12:29.000000000'),
numpy.datetime64('2015-07-01T12:28:30.000000000'),
numpy.datetime64('2015-02-11T13:29:30.000000000'),
numpy.datetime64('2015-07-01T17:00:10.000000000'),
numpy.datetime64('2015-07-01T19:29:00.000000000'),
numpy.datetime64('2015-06-11T11:27:39.000000000'),
numpy.datetime64('2015-06-11T12:00:27.000000000'),
numpy.datetime64('2015-06-11T21:10:27.000000000'),
numpy.datetime64('2015-06-11T20:54:11.000000000'),
numpy.datetime64('2015-07-02T16:02:32.000000000'),
numpy.datetime64('2015-09-22T01:29:17.000000000'),
numpy.datetime64('2015-08-04T13:39:48.000000000'),
numpy.datetime64('2015-08-04T11:08:56.000000000'),
numpy.datetime64('2015-08-04T15:06:32.000000000'),
numpy.datetime64('2015-10-03T20:06:03.000000000'),
numpy.datetime64('2015-08-07T00:02:26.000000000'),
numpy.datetime64('2015-08-06T19:10:10.000000000'),
numpy.datetime64('2015-08-06T12:26:13.000000000'),
numpy.datetime64('2015-09-07T18:15:36.000000000'),
numpy.datetime64('2015-09-07T02:56:16.000000000'),
numpy.datetime64('2015-10-17T20:59:04.000000000'),
numpy.datetime64('2015-08-06T15:18:29.000000000'),
numpy.datetime64('2015-08-03T00:21:17.000000000'),
numpy.datetime64('2015-09-07T13:51:46.000000000'),
numpy.datetime64('2015-09-07T02:29:40.000000000'),
numpy.datetime64('2015-08-02T03:07:06.000000000'),
numpy.datetime64('2015-09-20T04:35:59.000000000'),
numpy.datetime64('2015-06-25T10:13:35.000000000'),
numpy.datetime64('2015-09-20T15:12:05.000000000'),
numpy.datetime64('2015-09-20T11:53:53.000000000'),
numpy.datetime64('2015-09-20T05:23:11.000000000'),
numpy.datetime64('2015-09-20T06:10:56.000000000'),
numpy.datetime64('2015-09-20T16:25:40.000000000'),
numpy.datetime64('2015-09-20T16:35:07.000000000'),
numpy.datetime64('2015-11-05T12:35:34.000000000'),
numpy.datetime64('2015-08-09T04:41:35.000000000'),
numpy.datetime64('2015-08-09T07:02:36.000000000'),
numpy.datetime64('2015-08-05T14:28:15.000000000'),
numpy.datetime64('2015-09-11T22:50:58.000000000'),
numpy.datetime64('2015-09-11T23:32:33.000000000'),
numpy.datetime64('2015-09-11T20:29:20.000000000'),
numpy.datetime64('2015-08-05T12:16:00.000000000'),
numpy.datetime64('2015-08-05T09:34:20.000000000'),
numpy.datetime64('2015-08-02T07:08:35.000000000'),
numpy.datetime64('2015-09-11T20:09:08.000000000'),
numpy.datetime64('2015-09-16T07:10:01.000000000'),
numpy.datetime64('2015-09-16T13:08:15.000000000'),
numpy.datetime64('2015-08-02T22:06:41.000000000'),
numpy.datetime64('2015-08-02T02:59:38.000000000'),
numpy.datetime64('2015-09-16T22:51:53.000000000'),
numpy.datetime64('2015-05-14T20:02:35.000000000'),
numpy.datetime64('2015-09-18T19:05:00.000000000'),
numpy.datetime64('2015-06-25T08:33:41.000000000'),
numpy.datetime64('2015-05-15T01:02:36.000000000'),
numpy.datetime64('2015-05-14T22:42:07.000000000'),
numpy.datetime64('2015-05-11T12:24:34.000000000'),
numpy.datetime64('2015-09-18T23:19:48.000000000'),
numpy.datetime64('2015-11-05T12:46:00.000000000'),
numpy.datetime64('2015-09-18T07:52:23.000000000'),
numpy.datetime64('2015-06-11T23:10:49.000000000'),
numpy.datetime64('2015-09-19T00:06:04.000000000'),
numpy.datetime64('2015-06-18T22:45:58.000000000'),
numpy.datetime64('2015-06-18T18:23:38.000000000'),
numpy.datetime64('2015-01-17T16:56:35.000000000'),
numpy.datetime64('2015-07-19T10:03:29.000000000'),
numpy.datetime64('2015-06-19T00:15:10.000000000'),
numpy.datetime64('2015-02-11T14:57:50.000000000'),
numpy.datetime64('2015-06-18T00:00:00.000000000'),
numpy.datetime64('2015-06-18T20:00:59.000000000'),
numpy.datetime64('2015-06-18T09:45:54.000000000'),
numpy.datetime64('2015-09-18T12:10:04.000000000'),
numpy.datetime64('2015-09-18T12:54:22.000000000'),
numpy.datetime64('2015-06-18T08:45:02.000000000'),
numpy.datetime64('2015-09-26T17:29:46.000000000'),
numpy.datetime64('2015-10-04T13:17:27.000000000'),
numpy.datetime64('2015-06-25T10:57:48.000000000'),
numpy.datetime64('2015-06-18T19:11:42.000000000'),
numpy.datetime64('2015-06-18T19:36:21.000000000'),
numpy.datetime64('2015-06-18T07:49:52.000000000'),
numpy.datetime64('2015-06-18T09:04:31.000000000'),
numpy.datetime64('2015-07-04T23:36:38.000000000'),
numpy.datetime64('2015-09-20T11:17:35.000000000'),
numpy.datetime64('2015-07-04T20:54:17.000000000'),
numpy.datetime64('2015-07-05T00:57:28.000000000'),
numpy.datetime64('2015-08-02T13:11:27.000000000'),
numpy.datetime64('2015-09-20T14:04:08.000000000'),
numpy.datetime64('2015-08-02T23:23:17.000000000'),
numpy.datetime64('2015-11-04T08:57:27.000000000'),
numpy.datetime64('2015-09-20T23:51:22.000000000'),
numpy.datetime64('2015-09-20T07:53:08.000000000'),
numpy.datetime64('2015-09-21T00:32:41.000000000'),
numpy.datetime64('2015-09-26T01:07:52.000000000'),
numpy.datetime64('2015-09-25T21:50:44.000000000'),
numpy.datetime64('2015-09-25T19:08:29.000000000'),
numpy.datetime64('2015-09-14T18:24:09.000000000'),
numpy.datetime64('2015-06-25T19:23:49.000000000'),
numpy.datetime64('2015-09-14T23:31:28.000000000'),
numpy.datetime64('2015-09-16T10:01:14.000000000'),
numpy.datetime64('2015-08-10T15:49:20.000000000'),
numpy.datetime64('2015-09-28T11:04:56.000000000'),
numpy.datetime64('2015-09-29T08:59:03.000000000'),
numpy.datetime64('2015-09-12T11:46:03.000000000'),
numpy.datetime64('2015-06-04T09:35:55.000000000'),
numpy.datetime64('2015-05-11T19:03:56.000000000'),
numpy.datetime64('2015-05-21T05:46:39.000000000'),
numpy.datetime64('2015-05-21T20:11:28.000000000'),
numpy.datetime64('2015-05-21T13:48:28.000000000'),
numpy.datetime64('2015-09-29T20:11:20.000000000'),
numpy.datetime64('2015-05-08T14:49:07.000000000'),
numpy.datetime64('2015-05-08T11:12:24.000000000'),
numpy.datetime64('2015-09-18T10:38:44.000000000'),
numpy.datetime64('2015-05-08T12:25:28.000000000'),
numpy.datetime64('2015-05-08T01:33:39.000000000'),
numpy.datetime64('2015-09-18T07:35:59.000000000'),
numpy.datetime64('2015-09-18T22:50:13.000000000'),
numpy.datetime64('2015-10-04T21:41:09.000000000'),
numpy.datetime64('2015-02-08T13:54:07.000000000'),
numpy.datetime64('2015-02-25T08:07:41.000000000'),
numpy.datetime64('2015-09-20T14:28:25.000000000'),
numpy.datetime64('2015-09-21T17:24:01.000000000'),
numpy.datetime64('2015-02-25T07:36:30.000000000'),
numpy.datetime64('2015-09-20T08:19:10.000000000'),
numpy.datetime64('2015-02-25T17:18:17.000000000'),
numpy.datetime64('2015-09-25T16:13:13.000000000'),
numpy.datetime64('2015-02-25T09:50:36.000000000'),
numpy.datetime64('2015-02-10T13:18:52.000000000'),
numpy.datetime64('2015-02-10T14:26:37.000000000'),
numpy.datetime64('2015-09-14T11:30:35.000000000'),
numpy.datetime64('2015-09-30T12:13:12.000000000'),
numpy.datetime64('2015-09-30T19:27:03.000000000'),
numpy.datetime64('2015-09-21T16:21:05.000000000'),
numpy.datetime64('2015-09-21T12:07:31.000000000'),
numpy.datetime64('2015-07-05T05:46:42.000000000'),
numpy.datetime64('2015-11-06T08:16:49.000000000'),
numpy.datetime64('2015-09-25T22:26:04.000000000'),
numpy.datetime64('2015-06-04T17:32:00.000000000'),
numpy.datetime64('2015-09-12T14:59:03.000000000'),
numpy.datetime64('2015-09-28T10:20:30.000000000'),
numpy.datetime64('2015-06-04T12:41:56.000000000'),
numpy.datetime64('2015-06-04T08:37:15.000000000'),
numpy.datetime64('2015-07-05T20:48:24.000000000'),
numpy.datetime64('2015-07-05T13:13:33.000000000'),
numpy.datetime64('2015-10-21T08:29:50.000000000'),
numpy.datetime64('2015-09-08T13:38:05.000000000'),
numpy.datetime64('2015-07-05T10:11:18.000000000'),
numpy.datetime64('2015-09-08T08:38:48.000000000'),
numpy.datetime64('2015-09-14T22:44:38.000000000'),
numpy.datetime64('2015-09-14T23:46:58.000000000'),
numpy.datetime64('2015-08-31T12:57:35.000000000'),
numpy.datetime64('2015-11-02T17:45:42.000000000'),
numpy.datetime64('2015-09-14T12:18:37.000000000'),
numpy.datetime64('2015-09-15T13:30:36.000000000'),
numpy.datetime64('2015-11-07T18:12:29.000000000'),
numpy.datetime64('2015-09-16T01:41:20.000000000'),
numpy.datetime64('2015-11-07T18:29:49.000000000'),
numpy.datetime64('2015-10-27T19:51:04.000000000'),
numpy.datetime64('2015-11-06T12:16:57.000000000'),
numpy.datetime64('2015-09-15T14:35:29.000000000'),
numpy.datetime64('2015-09-15T22:10:01.000000000'),
numpy.datetime64('2015-08-06T12:42:40.000000000'),
numpy.datetime64('2015-08-06T22:39:39.000000000'),
numpy.datetime64('2015-08-06T22:32:10.000000000'),
numpy.datetime64('2015-09-15T21:29:16.000000000'),
numpy.datetime64('2015-09-15T20:34:23.000000000'),
numpy.datetime64('2015-08-09T20:28:24.000000000'),
numpy.datetime64('2015-09-21T18:00:00.000000000'),
numpy.datetime64('2015-09-14T19:08:31.000000000'),
numpy.datetime64('2015-09-14T12:04:07.000000000'),
numpy.datetime64('2015-09-14T21:36:26.000000000'),
numpy.datetime64('2015-09-15T16:37:18.000000000'),
numpy.datetime64('2015-05-08T19:29:12.000000000'),
numpy.datetime64('2015-05-15T11:42:20.000000000'),
numpy.datetime64('2015-09-15T19:22:22.000000000'),
numpy.datetime64('2015-09-15T11:58:38.000000000'),
numpy.datetime64('2015-09-15T14:51:52.000000000'),
...]
In [39]:
date_index = pd.DatetimeIndex(df['Created Date'].values)#for dataframe, each column is a series(object), call a values method
In [59]:
len([x for x in date_index.month if x == 3])
Out[59]:
2361
In [70]:
iterable = filter(lambda x: x == 3, list(date_index.month))
In [71]:
march_days = 0
for x in iterable:
march_days += 1
march_days
Out[71]:
2361
I'd like to see all of the 311 complaints called in on April 1st.
Surprise! We couldn't do this in class, but it was just a limitation of our data set
In [83]:
df.index=df['Created Date']
df.head()
Out[83]:
Unique Key
Created Date
Closed Date
Agency
Agency Name
Complaint Type
Descriptor
Location Type
Incident Zip
Incident Address
...
Bridge Highway Name
Bridge Highway Direction
Road Ramp
Bridge Highway Segment
Garage Lot Name
Ferry Direction
Ferry Terminal Name
Latitude
Longitude
Location
Created Date
2015-07-06 10:58:27
31015465
2015-07-06 10:58:27
07/22/2015 01:07:20 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Demand for Cash
NaN
11360
27-16 203 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.773540
-73.788237
(40.773539552542, -73.78823697228408)
2015-07-03 13:26:29
30997660
2015-07-03 13:26:29
07/03/2015 02:08:20 PM
NYPD
New York City Police Department
Vending
In Prohibited Area
Residential Building/House
10019
200 CENTRAL PARK SOUTH
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.767021
-73.979448
(40.76702142171206, -73.97944780718524)
2015-11-09 03:55:09
31950223
2015-11-09 03:55:09
11/09/2015 08:08:57 AM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
10453
1993 GRAND AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.852671
-73.910608
(40.85267061877697, -73.91060771362552)
2015-07-03 02:18:32
31000038
2015-07-03 02:18:32
07/03/2015 07:54:48 AM
NYPD
New York City Police Department
Noise - Commercial
Loud Music/Party
Club/Bar/Restaurant
11372
84-16 NORTHERN BOULEVARD
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.755774
-73.883262
(40.755773786469966, -73.88326243225418)
2015-07-04 00:03:27
30995614
2015-07-04 00:03:27
07/04/2015 03:33:09 AM
NYPD
New York City Police Department
Noise - Street/Sidewalk
Loud Talking
Street/Sidewalk
11216
1057 BERGEN STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.676175
-73.951269
(40.67617516102934, -73.9512690004692)
5 rows × 53 columns
What was the most popular type of complaint on April 1st?
What were the most popular three types of complaint on April 1st
In [84]:
df['2015-04-01']
Out[84]:
Unique Key
Created Date
Closed Date
Agency
Agency Name
Complaint Type
Descriptor
Location Type
Incident Zip
Incident Address
...
Bridge Highway Name
Bridge Highway Direction
Road Ramp
Bridge Highway Segment
Garage Lot Name
Ferry Direction
Ferry Terminal Name
Latitude
Longitude
Location
Created Date
2015-04-01 21:37:42
30311691
2015-04-01 21:37:42
04/01/2015 10:49:33 PM
NYPD
New York City Police Department
Illegal Parking
Blocked Sidewalk
Street/Sidewalk
11234
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.609810
-73.922498
(40.60980966645303, -73.92249759633725)
2015-04-01 23:12:04
30307701
2015-04-01 23:12:04
04/01/2015 11:32:40 PM
NYPD
New York City Police Department
Noise - Commercial
Loud Music/Party
Store/Commercial
11205
700 MYRTLE AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.694644
-73.955504
(40.694643700748486, -73.95550356170298)
2015-04-01 13:10:35
30313389
2015-04-01 13:10:35
04/07/2015 04:01:08 PM
DPR
Department of Parks and Recreation
Root/Sewer/Sidewalk Condition
Trees and Sidewalks Program
Street
11422
245-16 149 AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.653016
-73.738626
(40.653016256598534, -73.73862588133056)
2015-04-01 17:37:38
30314393
2015-04-01 17:37:38
04/03/2015 11:40:54 AM
DPR
Department of Parks and Recreation
Maintenance or Facility
Hours of Operation
Park
11211
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 12:32:40
30309207
2015-04-01 12:32:40
04/17/2015 01:06:49 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Installation/Work Quality
NaN
11423
90-71 198 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.714299
-73.761158
(40.71429859671565, -73.76115807774032)
2015-04-01 18:44:50
30311759
2015-04-01 18:44:50
06/24/2015 11:27:00 AM
DPR
Department of Parks and Recreation
Damaged Tree
Entire Tree Has Fallen Down
Street
10467
862 EAST 213 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.878028
-73.860237
(40.87802828144708, -73.86023734606933)
2015-04-01 16:30:15
30309690
2015-04-01 16:30:15
04/01/2015 11:27:22 PM
NYPD
New York City Police Department
Animal Abuse
Neglected
Residential Building/House
11368
107-15 NORTHERN BOULEVARD
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.757811
-73.861677
(40.757811195752154, -73.86167714731972)
2015-04-01 09:04:07
30307990
2015-04-01 09:04:07
04/06/2015 09:17:10 AM
DOF
Senior Citizen Rent Increase Exemption Unit
SCRIE
Miscellaneous
Senior Address
10027
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 07:46:58
30308253
2015-04-01 07:46:58
04/01/2015 09:32:31 AM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
11370
32-51 80 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.756412
-73.887405
(40.75641194675221, -73.88740503059863)
2015-04-01 17:12:17
30314214
2015-04-01 17:12:17
04/09/2015 02:20:11 PM
DOT
Department of Transportation
Highway Condition
Pothole - Highway
Highway
NaN
NaN
...
Long Island Expwy
West/Manhattan Bound
Roadway
Clearview Expwy (I-295) (Exit 27 S-N) - Utopia...
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 21:30:48
30307111
2015-04-01 21:30:48
NaN
DOHMH
Department of Health and Mental Hygiene
Food Establishment
Food Temperature
Restaurant/Bar/Deli/Bakery
11215
709 5 AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.660699
-73.994082
(40.660699296661825, -73.99408169463258)
2015-04-01 15:51:04
30311571
2015-04-01 15:51:04
04/14/2015 09:23:30 AM
DPR
Department of Parks and Recreation
Maintenance or Facility
Hours of Operation
Park
11210
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.621474
-73.950711
(40.62147413119333, -73.95071097029123)
2015-04-01 10:43:28
30313817
2015-04-01 10:43:28
NaN
DPR
Department of Parks and Recreation
Damaged Tree
Branch Cracked and Will Fall
NaN
10009
620 EAST 12TH STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.727725
-73.978204
(40.72772462544187, -73.97820435916094)
2015-04-01 15:12:46
30308922
2015-04-01 15:12:46
06/01/2015 06:25:48 AM
DOHMH
Department of Health and Mental Hygiene
Food Establishment
Letter Grading
Restaurant/Bar/Deli/Bakery
11238
663 FRANKLIN AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.675746
-73.956122
(40.67574618440852, -73.9561218336512)
2015-04-01 06:15:42
30311132
2015-04-01 06:15:42
04/01/2015 10:28:30 AM
DOT
Department of Transportation
Highway Condition
Pothole - Highway
Highway
10304
NaN
...
Staten Island Expwy
East/Brooklyn Bound
Roadway
Clove Rd/Richmond Rd (Exit 13) - Lily Pond Ave...
NaN
NaN
NaN
40.606875
-74.085408
(40.60687536641399, -74.0854077221027)
2015-04-01 11:28:02
30308180
2015-04-01 11:28:02
04/01/2015 11:42:53 AM
DOT
Department of Transportation
Highway Condition
Pothole - Highway
Highway
11432
NaN
...
Grand Central Pkwy
West/Toward Triborough Br
Ramp
168th St (Exit 17)
NaN
NaN
NaN
40.719228
-73.791963
(40.71922760413319, -73.791962929951)
2015-04-01 17:35:18
30313207
2015-04-01 17:35:18
06/01/2015 06:25:54 AM
DOHMH
Department of Health and Mental Hygiene
Food Establishment
Rodents/Insects/Garbage
Restaurant/Bar/Deli/Bakery
10011
140 WEST 13 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.737182
-73.998585
(40.737182358685516, -73.99858548189518)
2015-04-01 13:54:54
30310017
2015-04-01 13:54:54
04/06/2015 10:11:11 AM
DOF
Senior Citizen Rent Increase Exemption Unit
SCRIE
Miscellaneous
Senior Address
11435
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 23:49:33
30306774
2015-04-01 23:49:33
04/02/2015 12:20:59 AM
NYPD
New York City Police Department
Noise - Commercial
Loud Music/Party
Store/Commercial
10003
36 SAINT MARKS PLACE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.728733
-73.988011
(40.72873338955463, -73.98801059255561)
2015-04-01 07:50:49
30313339
2015-04-01 07:50:49
07/08/2015 02:19:25 PM
DOT
Department of Transportation
Street Condition
Rough, Pitted or Cracked Roads
Street
11385
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.703414
-73.862854
(40.70341423569781, -73.86285397616253)
2015-04-01 13:50:29
30312146
2015-04-01 13:50:29
06/01/2015 06:25:49 AM
DOHMH
Department of Health and Mental Hygiene
Food Establishment
Rodents/Insects/Garbage
Restaurant/Bar/Deli/Bakery
10028
1291 LEXINGTON AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.780069
-73.955158
(40.78006850471446, -73.95515761412761)
2015-04-01 16:14:19
30313259
2015-04-01 16:14:19
04/01/2015 04:21:53 PM
HRA
HRA Benefit Card Replacement
Benefit Card Replacement
Medicaid
NYC Street Address
NaN
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 19:27:34
30308920
2015-04-01 19:27:34
04/01/2015 08:45:17 PM
NYPD
New York City Police Department
Noise - Street/Sidewalk
Loud Music/Party
Street/Sidewalk
10017
210 EAST 46 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.753104
-73.972096
(40.75310402468627, -73.97209629231209)
2015-04-01 05:30:02
30314164
2015-04-01 05:30:02
04/01/2015 02:57:31 PM
DOT
Department of Transportation
Highway Condition
Pothole - Highway
Highway
NaN
NaN
...
BQE/Gowanus Expwy
East/Queens Bound
Roadway
Williamsburg Br / Metropolitan Ave (Exit 32) -...
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 10:33:26
30311790
2015-04-01 10:33:26
04/01/2015 11:19:12 AM
NYPD
New York City Police Department
Illegal Parking
Blocked Sidewalk
Street/Sidewalk
10033
2284 AMSTERDAM AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.843149
-73.934539
(40.84314882753921, -73.93453937669832)
2015-04-01 11:47:38
30310940
2015-04-01 11:47:38
04/06/2015 09:23:32 AM
DOF
Senior Citizen Rent Increase Exemption Unit
SCRIE
Miscellaneous
Senior Address
11355
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 11:01:27
30310409
2015-04-01 11:01:27
04/17/2015 01:06:42 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Exchange/Refund/Return
NaN
10455
2997 3 AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.819111
-73.913908
(40.819110789789214, -73.91390802507868)
2015-04-01 08:51:52
30310350
2015-04-01 08:51:52
04/03/2015 04:33:46 PM
DCA
Department of Consumer Affairs
Consumer Complaint
Cars Parked on Sidewalk/Street
NaN
11223
1701 WEST 8 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.605657
-73.981194
(40.60565667868274, -73.98119372058547)
2015-04-01 14:58:55
30313106
2015-04-01 14:58:55
04/06/2015 10:06:35 AM
DOF
Senior Citizen Rent Increase Exemption Unit
SCRIE
Rent Discrepancy
Senior Address
11201
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 16:59:19
30309324
2015-04-01 16:59:19
04/01/2015 07:48:33 PM
NYPD
New York City Police Department
Blocked Driveway
Partial Access
Street/Sidewalk
11210
650 EAST 24 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.634497
-73.954167
(40.63449684441219, -73.95416735372353)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
2015-04-01 12:14:11
30308181
2015-04-01 12:14:11
04/16/2015 03:52:40 PM
DOT
Department of Transportation
Highway Condition
Unsafe Worksite
Highway
11103
NaN
...
Grand Central Pkwy
East/Long Island Bound
Roadway
31st (Exit 3) - Brooklyn-Queens Expwy (I-278) ...
NaN
NaN
NaN
40.769309
-73.912236
(40.76930913453694, -73.91223589513348)
2015-04-01 10:00:57
30312096
2015-04-01 10:00:57
04/03/2015 02:35:36 PM
DOF
Senior Citizen Rent Increase Exemption Unit
SCRIE
Copy of Approval Order
Senior Address
10025
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 08:56:10
30314369
2015-04-01 08:56:10
04/01/2015 11:12:26 AM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
11377
31-36 68 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.757216
-73.899106
(40.7572160209837, -73.89910584068605)
2015-04-01 18:19:48
30310395
2015-04-01 18:19:48
04/17/2015 01:07:04 AM
DCA
Department of Consumer Affairs
Consumer Complaint
False Advertising
NaN
11372
80-13 37 AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.749584
-73.885951
(40.74958432631206, -73.88595125985013)
2015-04-01 16:23:18
30313528
2015-04-01 16:23:18
04/17/2015 01:07:00 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Exchange/Refund/Return
NaN
11226
850 FLATBUSH AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.651629
-73.959035
(40.651628886860884, -73.95903518064264)
2015-04-01 11:41:29
30312050
2015-04-01 11:41:29
04/06/2015 09:09:45 AM
DOF
Senior Citizen Rent Increase Exemption Unit
SCRIE
Application Renewal
Senior Address
10034
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 23:47:24
30314231
2015-04-01 23:47:24
07/28/2015 01:03:24 PM
DOT
Department of Transportation
Street Condition
Rough, Pitted or Cracked Roads
Street
11377
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.743456
-73.914836
(40.74345557431229, -73.91483581341043)
2015-04-01 08:16:38
30311103
2015-04-01 08:16:38
04/09/2015 09:33:26 AM
TLC
Taxi and Limousine Commission
Taxi Complaint
Driver Complaint
NaN
11209
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.634792
-74.032318
(40.63479238458042, -74.03231826494591)
2015-04-01 07:04:27
30310725
2015-04-01 07:04:27
04/01/2015 03:47:39 PM
NYPD
New York City Police Department
Illegal Parking
Posted Parking Sign Violation
Street/Sidewalk
11419
104-22 110 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.684012
-73.831954
(40.68401163822402, -73.83195428896114)
2015-04-01 23:36:08
30311907
2015-04-01 23:36:08
04/02/2015 07:29:05 AM
NYPD
New York City Police Department
Illegal Parking
Blocked Hydrant
Street/Sidewalk
11228
1343 78 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.617990
-74.008220
(40.617990283460536, -74.00821981214455)
2015-04-01 14:48:14
30308202
2015-04-01 14:48:14
04/01/2015 02:49:13 PM
HRA
HRA Benefit Card Replacement
Benefit Card Replacement
Food Stamp
NYC Street Address
NaN
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 15:26:42
30308819
2015-04-01 15:26:42
04/01/2015 05:19:41 PM
NYPD
New York City Police Department
Illegal Parking
Posted Parking Sign Violation
Street/Sidewalk
11101
43-10 CRESCENT STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.748707
-73.942316
(40.74870685388612, -73.94231592971958)
2015-04-01 19:08:07
30313580
2015-04-01 19:08:07
04/07/2015 11:25:05 AM
DOT
Department of Transportation
Street Condition
Defective Hardware
Street
11208
880 GLENMORE AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.675876
-73.877688
(40.67587618287245, -73.87768812152434)
2015-04-01 22:06:37
30313046
2015-04-01 22:06:37
04/02/2015 12:40:09 AM
NYPD
New York City Police Department
Noise - Street/Sidewalk
Loud Music/Party
Street/Sidewalk
10454
592 OAK TERRACE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.808939
-73.914543
(40.80893932182981, -73.91454250715576)
2015-04-01 00:09:40
30298884
2015-04-01 00:09:40
04/01/2015 02:17:16 AM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
11433
150-38 107 AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.694510
-73.800763
(40.69451003870482, -73.80076336778066)
2015-04-01 11:43:50
30311054
2015-04-01 11:43:50
04/06/2015 09:12:54 AM
DOF
Senior Citizen Rent Increase Exemption Unit
SCRIE
Copy of Approval Order
Senior Address
10003
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
2015-04-01 13:30:29
30307424
2015-04-01 13:30:29
04/13/2015 12:20:33 PM
DOT
Department of Transportation
Street Condition
Failed Street Repair
Street
11364
67-07 BELL BOULEVARD
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.743972
-73.759771
(40.74397211975241, -73.75977055909947)
2015-04-01 07:33:41
30314352
2015-04-01 07:33:41
04/13/2015 12:27:12 PM
DOT
Department of Transportation
Street Condition
Cave-in
Street
11357
14-51 143 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.785713
-73.826140
(40.7857127748661, -73.82614011947928)
2015-04-01 12:28:15
30312905
2015-04-01 12:28:15
04/01/2015 02:29:53 PM
NYPD
New York City Police Department
Illegal Parking
Double Parked Blocking Traffic
Street/Sidewalk
11372
72 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.749789
-73.893794
(40.74978944638325, -73.89379359227247)
2015-04-01 12:17:19
30311302
2015-04-01 12:17:19
04/17/2015 01:06:56 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Illegal Tow
NaN
11232
14 53 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.648964
-74.021255
(40.648963544502585, -74.02125458310132)
2015-04-01 12:08:19
30314467
2015-04-01 12:08:19
04/09/2015 02:43:13 PM
DOT
Department of Transportation
Street Condition
Failed Street Repair
Street
11428
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.722832
-73.748158
(40.72283183191531, -73.74815780857023)
2015-04-01 17:43:25
30311231
2015-04-01 17:43:25
04/01/2015 10:50:39 PM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
11435
143-30 LAKEWOOD AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.689215
-73.803877
(40.68921522366862, -73.80387663789386)
2015-04-01 18:30:35
30307426
2015-04-01 18:30:35
04/13/2015 12:15:11 PM
DOT
Department of Transportation
Street Condition
Failed Street Repair
Street
11362
NaN
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.750641
-73.739344
(40.75064138697133, -73.7393436538413)
2015-04-01 13:30:31
30308409
2015-04-01 13:30:31
04/13/2015 12:19:28 PM
DOT
Department of Transportation
Street Condition
Failed Street Repair
Street
11379
79-17 68 ROAD
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.710496
-73.872661
(40.71049602255762, -73.8726613318581)
2015-04-01 01:28:45
30298825
2015-04-01 01:28:45
04/01/2015 02:36:49 AM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
11232
4001 8 AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.646630
-73.997960
(40.646629679609966, -73.99796038095705)
2015-04-01 08:52:11
30307104
2015-04-01 08:52:11
04/02/2015 04:34:46 PM
DCA
Department of Consumer Affairs
Consumer Complaint
Installation/Work Quality
NaN
10469
3033 YOUNG AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.870105
-73.847979
(40.870105314232546, -73.84797875606117)
2015-04-01 11:12:49
30310013
2015-04-01 11:12:49
04/06/2015 11:47:20 AM
DOT
Department of Transportation
Street Sign - Damaged
Street Cleaning - ASP
Street
10026
17 LENOX AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.798932
-73.951952
(40.7989317549172, -73.9519520651255)
2015-04-01 16:18:23
30311889
2015-04-01 16:18:23
04/01/2015 11:11:11 PM
NYPD
New York City Police Department
Derelict Vehicle
With License Plate
Street/Sidewalk
11226
485 EAST 17 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.638946
-73.962055
(40.638946273235284, -73.96205520207174)
2015-04-01 13:16:44
30312450
2015-04-01 13:16:44
04/01/2015 02:30:55 PM
NYPD
New York City Police Department
Blocked Driveway
No Access
Street/Sidewalk
11372
37-18 73 STREET
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.748262
-73.892616
(40.748262273356396, -73.89261586191228)
2015-04-01 20:27:33
30313471
2015-04-01 20:27:33
04/17/2015 01:07:09 AM
DCA
Department of Consumer Affairs
Consumer Complaint
Overcharge
NaN
11226
3008 CHURCH AVENUE
...
NaN
NaN
NaN
NaN
NaN
NaN
NaN
40.650810
-73.949370
(40.6508098378492, -73.94937030940775)
147 rows × 53 columns
In [85]:
df['2015-04-01']['Complaint Type'].value_counts().head(3)
Out[85]:
Street Condition 18
Illegal Parking 15
Consumer Complaint 12
Name: Complaint Type, dtype: int64
What month has the most reports filed? How many? Graph it.
In [90]:
df.resample('M').count().plot(y="Unique Key",legend=False)
#http://pandas.pydata.org/pandas-docs/stable/timeseries.html#up-and-downsampling
#resample is a time-based groupby, followed by a reduction method on each of its groups
Out[90]:
<matplotlib.axes._subplots.AxesSubplot at 0x11544af28>
In [91]:
ax= df.groupby(df.index.month).count().plot(y='Unique Key', legend=False)
ax.set_xticks([1,2,3,4,5,6,7,8,9,10,11, 12])
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
ax.set_ylabel("Number of Complaints")
ax.set_title("311 complains filed monthly in 2015")
#september has the most complaints cases filed
Out[91]:
<matplotlib.text.Text at 0x1156f2198>
What week of the year has the most reports filed? How many? Graph the weekly complaints.
In [ ]:
In [ ]:
Noise complaints are a big deal. Use .str.contains to select noise complaints, and make an chart of when they show up annually. Then make a chart about when they show up every day (cyclic).
In [ ]:
In [ ]:
Which were the top five days of the year for filing complaints? How many on each of those days? Graph it.
In [ ]:
In [ ]:
What hour of the day are the most complaints? Graph a day of complaints.
In [ ]:
In [ ]:
One of the hours has an odd number of complaints. What are the most common complaints at that hour, and what are the most common complaints the hour before and after?
In [ ]:
In [ ]:
In [ ]:
So odd. What's the per-minute breakdown of complaints between 12am and 1am? You don't need to include 1am.
In [ ]:
Looks like midnight is a little bit of an outlier. Why might that be? Take the 5 most common agencies and graph the times they file reports at (all day, not just midnight).
In [ ]:
Graph those same agencies on an annual basis - make it weekly. When do people like to complain? When does the NYPD have an odd number of complaints?
In [ ]:
Maybe the NYPD deals with different issues at different times? Check the most popular complaints in July and August vs the month of May. Also check the most common complaints for the Housing Preservation Bureau (HPD) in winter vs. summer.
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
Content source: sz2472/foundations-homework
Similar notebooks: