Image Classification

In this project we classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile('cifar-10-python.tar.gz'):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            'cifar-10-python.tar.gz',
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open('cifar-10-python.tar.gz') as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 5
sample_id = 55
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 5:
Samples: 10000
Label Counts: {0: 1014, 1: 1014, 2: 952, 3: 1016, 4: 997, 5: 1025, 6: 980, 7: 977, 8: 1003, 9: 1022}
First 20 Labels: [1, 8, 5, 1, 5, 7, 4, 3, 8, 2, 7, 2, 0, 1, 5, 9, 6, 2, 0, 8]

Example of Image 55:
Image - Min Value: 17 Max Value: 255
Image - Shape: (32, 32, 3)
Label - Label Id: 7 Name: horse

Implement Preprocess Functions

Normalize


In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    As there are 255 colours, we will divide the colours by 255 to get
    it to be within the range of 0 to 1. 
    for example 185 / 255 is .619
    We do this to make the data easier to work with
    """
    normal = x / 255.
    
    return normal


tests.test_normalize(normalize)


Tests Passed

One-hot encode


In [4]:
import tensorflow as tf
from sklearn import preprocessing

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels    
    
    array with lots of 0s except a 1 where there is the thing we want
    """
    
    lb = preprocessing.LabelBinarizer()
    lb.fit(x)
    lb.classes_ = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    print(lb.classes_)
    return lb.transform(x)


tests.test_one_hot_encode(one_hot_encode)


[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Tests Passed

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [5]:
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)


[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Check Point

The preprocessed data has been saved to disk.


In [6]:
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

Note: None for shapes in TensorFlow allow for a dynamic size.


In [7]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """    
    print(*image_shape)
    tensor = tf.placeholder(tf.float32, 
                            shape=[None, image_shape[0], image_shape[1], image_shape[2]],
                           name="x")
    return tensor


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    print(n_classes)
    y = tf.placeholder(tf.float32, (None, n_classes), name="y")
    return y


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    keep = tf.placeholder(tf.float32, (None), name="keep_prob")
    return keep


tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


32 32 3
Image Input Tests Passed.
10
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer


In [8]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    
    tensor_shape = int(x_tensor.get_shape()[3])
    
    # Generate values with tf.truncated_normal
    weights = tf.Variable(tf.truncated_normal([*conv_ksize, tensor_shape, conv_num_outputs], 
                                              mean=0, stddev=.1))
    print(weights)
    
    bias = tf.Variable(tf.zeros(shape=[conv_num_outputs], dtype=tf.float32))
    print(bias)
    
    result = tf.nn.conv2d(x_tensor, weights, strides=[1, *conv_strides, 1], padding="SAME")
    print(result)
    
    result = result + bias
    print(result)
    
    #Activation
    result = tf.nn.elu(result)
    
    # result = tf.nn.max_pool(result, [1, *pool_ksize, 1], [1, *pool_strides, 1], padding="SAME")    
    print(result)
    
    return result


# tests.test_con_pool(conv2d_maxpool)

Flatten Layer


In [9]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    return tf.contrib.layers.flatten(x_tensor)


tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer


In [10]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    return tf.contrib.layers.fully_connected(x_tensor, num_outputs)


tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer


In [11]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    return tf.contrib.layers.fully_connected(x_tensor, 
                                             num_outputs, activation_fn=None)


tests.test_output(output)


Tests Passed

Show Stats


In [12]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    print("Loss", session.run(cost, feed_dict={x: feature_batch, y: label_batch, keep_prob: 1.0}))
    print("Accuracy", session.run(accuracy, feed_dict={x: feature_batch, y: label_batch, keep_prob: 1.0}))
    print("Validation",session.run(accuracy, feed_dict={x: valid_features, y: valid_labels, keep_prob: 1.0}))

Create Convolutional Model


In [47]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    
    pool_ksize = (4, 4)
    pool_strides = (4, 4)
    
    conv_ksize = (3, 3)
    conv_num_outputs = 96
    conv_strides = (2, 2)
    net = conv2d_maxpool(x, conv_num_outputs, 
                         conv_ksize, conv_strides, 
                         pool_ksize, pool_strides)
    net = conv2d_maxpool(net, conv_num_outputs, 
                         conv_ksize, conv_strides, 
                         pool_ksize, pool_strides)
    
    
    net = tf.nn.dropout(net, keep_prob)
    
    
    conv_num_outputs = 192
    conv_strides = (2, 2)
    net = conv2d_maxpool(net, conv_num_outputs, 
                         conv_ksize, conv_strides, 
                         pool_ksize, pool_strides)
    net = conv2d_maxpool(net, conv_num_outputs, 
                         conv_ksize, conv_strides, 
                         pool_ksize, pool_strides)
    
    net = tf.nn.dropout(net, keep_prob)
    
    conv_ksize = (1, 1)
    conv_strides = (1, 1)
    net = conv2d_maxpool(net, conv_num_outputs, 
                         conv_ksize, conv_strides, 
                         pool_ksize, pool_strides)
    
    conv_num_outputs = 16
    net = conv2d_maxpool(net, conv_num_outputs, 
                         conv_ksize, conv_strides, 
                         pool_ksize, pool_strides)
    

    
    net = tf.contrib.layers.avg_pool2d(net, [2,2])
    
    net = flatten(net)
        
    # Apply an Output Layer
    net = output(net, 10)
    
    return net


##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=.001).minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


32 32 3
10
Tensor("Variable/read:0", shape=(3, 3, 3, 96), dtype=float32)
Tensor("Variable_1/read:0", shape=(96,), dtype=float32)
Tensor("Conv2D:0", shape=(?, 16, 16, 96), dtype=float32)
Tensor("add:0", shape=(?, 16, 16, 96), dtype=float32)
Tensor("Elu:0", shape=(?, 16, 16, 96), dtype=float32)
Tensor("Variable_2/read:0", shape=(3, 3, 96, 96), dtype=float32)
Tensor("Variable_3/read:0", shape=(96,), dtype=float32)
Tensor("Conv2D_1:0", shape=(?, 8, 8, 96), dtype=float32)
Tensor("add_1:0", shape=(?, 8, 8, 96), dtype=float32)
Tensor("Elu_1:0", shape=(?, 8, 8, 96), dtype=float32)
Tensor("Variable_4/read:0", shape=(3, 3, 96, 192), dtype=float32)
Tensor("Variable_5/read:0", shape=(192,), dtype=float32)
Tensor("Conv2D_2:0", shape=(?, 4, 4, 192), dtype=float32)
Tensor("add_2:0", shape=(?, 4, 4, 192), dtype=float32)
Tensor("Elu_2:0", shape=(?, 4, 4, 192), dtype=float32)
Tensor("Variable_6/read:0", shape=(3, 3, 192, 192), dtype=float32)
Tensor("Variable_7/read:0", shape=(192,), dtype=float32)
Tensor("Conv2D_3:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("add_3:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Elu_3:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Variable_8/read:0", shape=(1, 1, 192, 192), dtype=float32)
Tensor("Variable_9/read:0", shape=(192,), dtype=float32)
Tensor("Conv2D_4:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("add_4:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Elu_4:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Variable_10/read:0", shape=(1, 1, 192, 16), dtype=float32)
Tensor("Variable_11/read:0", shape=(16,), dtype=float32)
Tensor("Conv2D_5:0", shape=(?, 2, 2, 16), dtype=float32)
Tensor("add_5:0", shape=(?, 2, 2, 16), dtype=float32)
Tensor("Elu_5:0", shape=(?, 2, 2, 16), dtype=float32)
Tensor("Variable_12/read:0", shape=(3, 3, 3, 96), dtype=float32)
Tensor("Variable_13/read:0", shape=(96,), dtype=float32)
Tensor("Conv2D_6:0", shape=(?, 16, 16, 96), dtype=float32)
Tensor("add_6:0", shape=(?, 16, 16, 96), dtype=float32)
Tensor("Elu_6:0", shape=(?, 16, 16, 96), dtype=float32)
Tensor("Variable_14/read:0", shape=(3, 3, 96, 96), dtype=float32)
Tensor("Variable_15/read:0", shape=(96,), dtype=float32)
Tensor("Conv2D_7:0", shape=(?, 8, 8, 96), dtype=float32)
Tensor("add_7:0", shape=(?, 8, 8, 96), dtype=float32)
Tensor("Elu_7:0", shape=(?, 8, 8, 96), dtype=float32)
Tensor("Variable_16/read:0", shape=(3, 3, 96, 192), dtype=float32)
Tensor("Variable_17/read:0", shape=(192,), dtype=float32)
Tensor("Conv2D_8:0", shape=(?, 4, 4, 192), dtype=float32)
Tensor("add_8:0", shape=(?, 4, 4, 192), dtype=float32)
Tensor("Elu_8:0", shape=(?, 4, 4, 192), dtype=float32)
Tensor("Variable_18/read:0", shape=(3, 3, 192, 192), dtype=float32)
Tensor("Variable_19/read:0", shape=(192,), dtype=float32)
Tensor("Conv2D_9:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("add_9:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Elu_9:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Variable_20/read:0", shape=(1, 1, 192, 192), dtype=float32)
Tensor("Variable_21/read:0", shape=(192,), dtype=float32)
Tensor("Conv2D_10:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("add_10:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Elu_10:0", shape=(?, 2, 2, 192), dtype=float32)
Tensor("Variable_22/read:0", shape=(1, 1, 192, 16), dtype=float32)
Tensor("Variable_23/read:0", shape=(16,), dtype=float32)
Tensor("Conv2D_11:0", shape=(?, 2, 2, 16), dtype=float32)
Tensor("add_11:0", shape=(?, 2, 2, 16), dtype=float32)
Tensor("Elu_11:0", shape=(?, 2, 2, 16), dtype=float32)
Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization.


In [14]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
           
    session.run(optimizer,
                feed_dict = {x:feature_batch, y:label_batch, keep_prob:keep_probability})


tests.test_train_nn(train_neural_network)


Tests Passed

Hyperparameters


In [43]:
epochs = 10
batch_size = 64
keep_probability = .7

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch.


In [46]:
"""
New test based on:
https://arxiv.org/pdf/1412.6806.pdf

"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1021     try:
-> 1022       return fn(*args)
   1023     except errors.OpError as e:

C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1003                                  feed_dict, fetch_list, target_list,
-> 1004                                  status, run_metadata)
   1005 

C:\anthony-ide\Anaconda3\envs\tflearn\lib\contextlib.py in __exit__(self, type, value, traceback)
     65             try:
---> 66                 next(self.gen)
     67             except StopIteration:

C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
    465           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466           pywrap_tensorflow.TF_GetCode(status))
    467   finally:

InvalidArgumentError: stride must be less than or equal to kernel size
	 [[Node: gradients/AvgPool2D/AvgPool_grad/AvgPoolGrad = AvgPoolGrad[T=DT_FLOAT, data_format="NHWC", ksize=[1, 2, 2, 1], padding="VALID", strides=[1, 8, 8, 1], _device="/job:localhost/replica:0/task:0/cpu:0"](gradients/AvgPool2D/AvgPool_grad/Shape, gradients/Flatten/Reshape_grad/Reshape)]]

During handling of the above exception, another exception occurred:

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-46-f4364433eba1> in <module>()
     13         batch_i = 1
     14         for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
---> 15             train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
     16         print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
     17         print_stats(sess, batch_features, batch_labels, cost, accuracy)

<ipython-input-14-8cb8f9fc8391> in train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch)
     10 
     11     session.run(optimizer,
---> 12                 feed_dict = {x:feature_batch, y:label_batch, keep_prob:keep_probability})
     13 
     14 

C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    765     try:
    766       result = self._run(None, fetches, feed_dict, options_ptr,
--> 767                          run_metadata_ptr)
    768       if run_metadata:
    769         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    963     if final_fetches or final_targets:
    964       results = self._do_run(handle, final_targets, final_fetches,
--> 965                              feed_dict_string, options, run_metadata)
    966     else:
    967       results = []

C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1013     if handle is None:
   1014       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015                            target_list, options, run_metadata)
   1016     else:
   1017       return self._do_call(_prun_fn, self._session, handle, feed_dict,

C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1033         except KeyError:
   1034           pass
-> 1035       raise type(e)(node_def, op, message)
   1036 
   1037   def _extend_graph(self):

InvalidArgumentError: stride must be less than or equal to kernel size
	 [[Node: gradients/AvgPool2D/AvgPool_grad/AvgPoolGrad = AvgPoolGrad[T=DT_FLOAT, data_format="NHWC", ksize=[1, 2, 2, 1], padding="VALID", strides=[1, 8, 8, 1], _device="/job:localhost/replica:0/task:0/cpu:0"](gradients/AvgPool2D/AvgPool_grad/Shape, gradients/Flatten/Reshape_grad/Reshape)]]

Caused by op 'gradients/AvgPool2D/AvgPool_grad/AvgPoolGrad', defined at:
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
    app.launch_new_instance()
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
    app.start()
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\ipykernel\kernelapp.py", line 474, in start
    ioloop.IOLoop.instance().start()
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
    super(ZMQIOLoop, self).start()
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tornado\ioloop.py", line 887, in start
    handler_func(fd_obj, events)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell
    handler(stream, idents, msg)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request
    user_expressions, allow_stdin)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes
    if self.run_code(code, result):
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-45-ffa36c5a13bc>", line 80, in <module>
    optimizer = tf.train.AdamOptimizer(learning_rate=.001).minimize(cost)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\training\optimizer.py", line 279, in minimize
    grad_loss=grad_loss)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\training\optimizer.py", line 345, in compute_gradients
    colocate_gradients_with_ops=colocate_gradients_with_ops)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 482, in gradients
    in_grads = grad_fn(op, *out_grads)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\ops\nn_grad.py", line 410, in _AvgPoolGrad
    data_format=op.get_attr("data_format"))
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 148, in _avg_pool_grad
    data_format=data_format, name=name)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 763, in apply_op
    op_def=op_def)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\framework\ops.py", line 2327, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\framework\ops.py", line 1226, in __init__
    self._traceback = _extract_stack()

...which was originally created as op 'AvgPool2D/AvgPool', defined at:
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
[elided 18 identical lines from previous traceback]
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-45-ffa36c5a13bc>", line 73, in <module>
    logits = conv_net(x, keep_prob)
  File "<ipython-input-45-ffa36c5a13bc>", line 50, in conv_net
    net = tf.contrib.layers.avg_pool2d(net, [2,2], [8,8])
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\contrib\framework\python\ops\arg_scope.py", line 177, in func_with_args
    return func(*args, **current_args)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\contrib\layers\python\layers\layers.py", line 128, in avg_pool2d
    outputs = layer.apply(inputs)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\layers\base.py", line 303, in apply
    return self.__call__(inputs, **kwargs)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\layers\base.py", line 273, in __call__
    outputs = self.call(inputs, **kwargs)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\layers\pooling.py", line 277, in call
    data_format=utils.convert_data_format(self.data_format, 4))
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 1765, in avg_pool
    name=name)
  File "C:\anthony-ide\Anaconda3\envs\tflearn\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 50, in _avg_pool
    data_format=data_format, name=name)

InvalidArgumentError (see above for traceback): stride must be less than or equal to kernel size
	 [[Node: gradients/AvgPool2D/AvgPool_grad/AvgPoolGrad = AvgPoolGrad[T=DT_FLOAT, data_format="NHWC", ksize=[1, 2, 2, 1], padding="VALID", strides=[1, 8, 8, 1], _device="/job:localhost/replica:0/task:0/cpu:0"](gradients/AvgPool2D/AvgPool_grad/Shape, gradients/Flatten/Reshape_grad/Reshape)]]

In [ ]:

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [42]:
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss 2.1603
Accuracy 0.275
Validation 0.2548
Epoch  1, CIFAR-10 Batch 2:  Loss 1.71053
Accuracy 0.35
Validation 0.345
Epoch  1, CIFAR-10 Batch 3:  Loss 1.46078
Accuracy 0.45
Validation 0.3806
Epoch  1, CIFAR-10 Batch 4:  Loss 1.64963
Accuracy 0.4
Validation 0.3794
Epoch  1, CIFAR-10 Batch 5:  Loss 1.75752
Accuracy 0.45
Validation 0.412
Epoch  2, CIFAR-10 Batch 1:  Loss 1.74079
Accuracy 0.425
Validation 0.426
Epoch  2, CIFAR-10 Batch 2:  Loss 1.44942
Accuracy 0.475
Validation 0.438
Epoch  2, CIFAR-10 Batch 3:  Loss 1.11097
Accuracy 0.65
Validation 0.4532
Epoch  2, CIFAR-10 Batch 4:  Loss 1.39879
Accuracy 0.525
Validation 0.4486
Epoch  2, CIFAR-10 Batch 5:  Loss 1.73115
Accuracy 0.35
Validation 0.4564
Epoch  3, CIFAR-10 Batch 1:  Loss 1.79661
Accuracy 0.525
Validation 0.4682
Epoch  3, CIFAR-10 Batch 2:  Loss 1.33403
Accuracy 0.525
Validation 0.476
Epoch  3, CIFAR-10 Batch 3:  Loss 1.04343
Accuracy 0.625
Validation 0.477
Epoch  3, CIFAR-10 Batch 4:  Loss 1.3528
Accuracy 0.525
Validation 0.4686
Epoch  3, CIFAR-10 Batch 5:  Loss 1.68573
Accuracy 0.425
Validation 0.4938
Epoch  4, CIFAR-10 Batch 1:  Loss 1.65554
Accuracy 0.475
Validation 0.506
Epoch  4, CIFAR-10 Batch 2:  Loss 1.22471
Accuracy 0.55
Validation 0.5048
Epoch  4, CIFAR-10 Batch 3:  Loss 0.925171
Accuracy 0.675
Validation 0.5094
Epoch  4, CIFAR-10 Batch 4:  Loss 1.23312
Accuracy 0.575
Validation 0.5156
Epoch  4, CIFAR-10 Batch 5:  Loss 1.54294
Accuracy 0.475
Validation 0.5122
Epoch  5, CIFAR-10 Batch 1:  Loss 1.48058
Accuracy 0.525
Validation 0.5198
Epoch  5, CIFAR-10 Batch 2:  Loss 1.15082
Accuracy 0.6
Validation 0.5224
Epoch  5, CIFAR-10 Batch 3:  Loss 0.876537
Accuracy 0.7
Validation 0.5316
Epoch  5, CIFAR-10 Batch 4:  Loss 1.12681
Accuracy 0.6
Validation 0.5356
Epoch  5, CIFAR-10 Batch 5:  Loss 1.34351
Accuracy 0.55
Validation 0.5432
Epoch  6, CIFAR-10 Batch 1:  Loss 1.40437
Accuracy 0.5
Validation 0.5496
Epoch  6, CIFAR-10 Batch 2:  Loss 1.08899
Accuracy 0.575
Validation 0.5386
Epoch  6, CIFAR-10 Batch 3:  Loss 0.819337
Accuracy 0.725
Validation 0.5478
Epoch  6, CIFAR-10 Batch 4:  Loss 1.14955
Accuracy 0.5
Validation 0.5444
Epoch  6, CIFAR-10 Batch 5:  Loss 1.25644
Accuracy 0.5
Validation 0.5624
Epoch  7, CIFAR-10 Batch 1:  Loss 1.31719
Accuracy 0.55
Validation 0.5548
Epoch  7, CIFAR-10 Batch 2:  Loss 1.03542
Accuracy 0.65
Validation 0.5544
Epoch  7, CIFAR-10 Batch 3:  Loss 0.815569
Accuracy 0.7
Validation 0.5656
Epoch  7, CIFAR-10 Batch 4:  Loss 1.07673
Accuracy 0.625
Validation 0.5562
Epoch  7, CIFAR-10 Batch 5:  Loss 1.20262
Accuracy 0.55
Validation 0.5718
Epoch  8, CIFAR-10 Batch 1:  Loss 1.2917
Accuracy 0.65
Validation 0.5684
Epoch  8, CIFAR-10 Batch 2:  Loss 0.971092
Accuracy 0.625
Validation 0.569
Epoch  8, CIFAR-10 Batch 3:  Loss 0.748917
Accuracy 0.725
Validation 0.57
Epoch  8, CIFAR-10 Batch 4:  Loss 1.04197
Accuracy 0.575
Validation 0.5648
Epoch  8, CIFAR-10 Batch 5:  Loss 1.21654
Accuracy 0.575
Validation 0.5784
Epoch  9, CIFAR-10 Batch 1:  Loss 1.16922
Accuracy 0.675
Validation 0.5782
Epoch  9, CIFAR-10 Batch 2:  Loss 0.953641
Accuracy 0.625
Validation 0.574
Epoch  9, CIFAR-10 Batch 3:  Loss 0.719838
Accuracy 0.725
Validation 0.5778
Epoch  9, CIFAR-10 Batch 4:  Loss 0.987026
Accuracy 0.575
Validation 0.5794
Epoch  9, CIFAR-10 Batch 5:  Loss 1.00425
Accuracy 0.625
Validation 0.5958
Epoch 10, CIFAR-10 Batch 1:  Loss 1.12368
Accuracy 0.65
Validation 0.588
Epoch 10, CIFAR-10 Batch 2:  Loss 0.886597
Accuracy 0.625
Validation 0.5808
Epoch 10, CIFAR-10 Batch 3:  Loss 0.727178
Accuracy 0.675
Validation 0.5822
Epoch 10, CIFAR-10 Batch 4:  Loss 0.969557
Accuracy 0.625
Validation 0.577
Epoch 10, CIFAR-10 Batch 5:  Loss 1.0109
Accuracy 0.675
Validation 0.5906

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [44]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.5997213375796179

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.