INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_save_checkpoints_steps': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fc51817c400>, '_task_id': 0, '_save_summary_steps': 100, '_service': None, '_tf_random_seed': None, '_log_step_count_steps': 100, '_model_dir': '/tmp/mnist', '_is_chief': True, '_master': '', '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_keep_checkpoint_every_n_hours': 10000, '_session_config': None, '_save_checkpoints_secs': 600, '_keep_checkpoint_max': 5, '_task_type': 'worker'}
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Restoring parameters from /tmp/mnist/model.ckpt-100
INFO:tensorflow:Saving checkpoints for 101 into /tmp/mnist/model.ckpt.
INFO:tensorflow:train_accuracy = 0.84375
INFO:tensorflow:loss = 1.00334, step = 101
INFO:tensorflow:train_accuracy = 0.84375 (0.198 sec)
INFO:tensorflow:train_accuracy = 0.875 (0.059 sec)
INFO:tensorflow:train_accuracy = 0.851562 (0.061 sec)
INFO:tensorflow:train_accuracy = 0.83125 (0.057 sec)
INFO:tensorflow:train_accuracy = 0.838542 (0.056 sec)
INFO:tensorflow:train_accuracy = 0.834821 (0.058 sec)
INFO:tensorflow:train_accuracy = 0.832031 (0.058 sec)
INFO:tensorflow:train_accuracy = 0.840278 (0.062 sec)
INFO:tensorflow:train_accuracy = 0.85 (0.064 sec)
INFO:tensorflow:global_step/sec: 136.794
INFO:tensorflow:train_accuracy = 0.84375 (0.060 sec)
INFO:tensorflow:loss = 1.26865, step = 201 (0.732 sec)
INFO:tensorflow:train_accuracy = 0.851562 (0.057 sec)
INFO:tensorflow:train_accuracy = 0.848558 (0.055 sec)
INFO:tensorflow:train_accuracy = 0.852679 (0.059 sec)
INFO:tensorflow:train_accuracy = 0.8625 (0.065 sec)
INFO:tensorflow:train_accuracy = 0.857422 (0.065 sec)
INFO:tensorflow:train_accuracy = 0.862132 (0.063 sec)
INFO:tensorflow:train_accuracy = 0.864583 (0.063 sec)
INFO:tensorflow:train_accuracy = 0.866776 (0.064 sec)
INFO:tensorflow:train_accuracy = 0.867188 (0.067 sec)
INFO:tensorflow:global_step/sec: 159.047
INFO:tensorflow:train_accuracy = 0.870536 (0.071 sec)
INFO:tensorflow:loss = 0.55366, step = 301 (0.630 sec)
INFO:tensorflow:train_accuracy = 0.875 (0.057 sec)
INFO:tensorflow:train_accuracy = 0.879076 (0.059 sec)
INFO:tensorflow:train_accuracy = 0.880208 (0.065 sec)
INFO:tensorflow:train_accuracy = 0.8825 (0.067 sec)
INFO:tensorflow:train_accuracy = 0.887019 (0.068 sec)
INFO:tensorflow:train_accuracy = 0.888889 (0.067 sec)
INFO:tensorflow:train_accuracy = 0.891741 (0.073 sec)
INFO:tensorflow:train_accuracy = 0.894397 (0.069 sec)
INFO:tensorflow:train_accuracy = 0.891667 (0.043 sec)
INFO:tensorflow:global_step/sec: 163.315
INFO:tensorflow:train_accuracy = 0.893145 (0.043 sec)
INFO:tensorflow:loss = 0.539735, step = 401 (0.612 sec)
INFO:tensorflow:train_accuracy = 0.892578 (0.043 sec)
INFO:tensorflow:train_accuracy = 0.892992 (0.044 sec)
INFO:tensorflow:train_accuracy = 0.894301 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.895536 (0.041 sec)
INFO:tensorflow:train_accuracy = 0.895833 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.896959 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.899671 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.89984 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.9 (0.039 sec)
INFO:tensorflow:global_step/sec: 247.879
INFO:tensorflow:train_accuracy = 0.902439 (0.042 sec)
INFO:tensorflow:loss = 0.0332606, step = 501 (0.403 sec)
INFO:tensorflow:train_accuracy = 0.903274 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.903343 (0.035 sec)
INFO:tensorflow:train_accuracy = 0.903409 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.902083 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.902853 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.904255 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.905599 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.90625 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.9075 (0.039 sec)
INFO:tensorflow:global_step/sec: 265.028
INFO:tensorflow:train_accuracy = 0.90625 (0.039 sec)
INFO:tensorflow:loss = 0.376897, step = 601 (0.377 sec)
INFO:tensorflow:train_accuracy = 0.907452 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.908019 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.907986 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.909659 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.910156 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.911184 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.912177 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.912606 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.913542 (0.035 sec)
INFO:tensorflow:global_step/sec: 269.442
INFO:tensorflow:train_accuracy = 0.913934 (0.036 sec)
INFO:tensorflow:loss = 0.18219, step = 701 (0.371 sec)
INFO:tensorflow:train_accuracy = 0.91381 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.914683 (0.035 sec)
INFO:tensorflow:train_accuracy = 0.915527 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.916346 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.917614 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.91791 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.918199 (0.036 sec)
INFO:tensorflow:train_accuracy = 0.918478 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.919196 (0.039 sec)
INFO:tensorflow:global_step/sec: 270.664
INFO:tensorflow:train_accuracy = 0.919894 (0.041 sec)
INFO:tensorflow:loss = 0.0421399, step = 801 (0.371 sec)
INFO:tensorflow:train_accuracy = 0.920573 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.921233 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.921875 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.922083 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.923109 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.924107 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.92508 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.926028 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.925 (0.035 sec)
INFO:tensorflow:global_step/sec: 259.249
INFO:tensorflow:train_accuracy = 0.925926 (0.040 sec)
INFO:tensorflow:loss = 0.00482497, step = 901 (0.385 sec)
INFO:tensorflow:train_accuracy = 0.926448 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.927334 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.928199 (0.041 sec)
INFO:tensorflow:train_accuracy = 0.928309 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.928416 (0.040 sec)
INFO:tensorflow:train_accuracy = 0.928879 (0.037 sec)
INFO:tensorflow:train_accuracy = 0.929688 (0.038 sec)
INFO:tensorflow:train_accuracy = 0.930477 (0.039 sec)
INFO:tensorflow:train_accuracy = 0.93125 (0.041 sec)
INFO:tensorflow:Saving checkpoints for 1000 into /tmp/mnist/model.ckpt.
INFO:tensorflow:Loss for final step: 0.126534.
INFO:tensorflow:Starting evaluation at 2018-04-11-16:16:32
INFO:tensorflow:Restoring parameters from /tmp/mnist/model.ckpt-1000
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-13-126e86f7f6c4> in <module>()
40 FLAGS, unparsed = parser.parse_known_args()
41
---> 42 tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/platform/app.py in run(main, argv)
46 # Call the main function, passing through any arguments
47 # to the final program.
---> 48 _sys.exit(main(_sys.argv[:1] + flags_passthrough))
49
50
<ipython-input-13-126e86f7f6c4> in main(unused_argv)
17
18 # Evaluate the model and print results
---> 19 eval_results = mnist_classifier.evaluate(input_fn=lambda:train_input_fn(tst_tfrecords_file, FLAGS.batch_size))
20 print()
21 print('Evaluation results:\n\t%s' % eval_results)
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py in evaluate(self, input_fn, steps, hooks, checkpoint_path, name)
353 hooks=hooks,
354 checkpoint_path=checkpoint_path,
--> 355 name=name)
356
357 def _convert_eval_steps_to_hooks(self, steps):
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py in _evaluate_model(self, input_fn, hooks, checkpoint_path, name)
837 final_ops=eval_dict,
838 hooks=all_hooks,
--> 839 config=self._session_config)
840
841 _write_dict_to_summary(
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/training/evaluation.py in _evaluate_once(checkpoint_path, master, scaffold, eval_ops, feed_dict, final_ops, final_ops_feed_dict, hooks, config)
204 if eval_ops is not None:
205 while not session.should_stop():
--> 206 session.run(eval_ops, feed_dict)
207
208 logging.info('Finished evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, fetches, feed_dict, options, run_metadata)
519 feed_dict=feed_dict,
520 options=options,
--> 521 run_metadata=run_metadata)
522
523 def should_stop(self):
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, fetches, feed_dict, options, run_metadata)
890 feed_dict=feed_dict,
891 options=options,
--> 892 run_metadata=run_metadata)
893 except _PREEMPTION_ERRORS as e:
894 logging.info('An error was raised. This may be due to a preemption in '
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, *args, **kwargs)
950 def run(self, *args, **kwargs):
951 try:
--> 952 return self._sess.run(*args, **kwargs)
953 except _PREEMPTION_ERRORS:
954 raise
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, fetches, feed_dict, options, run_metadata)
1022 feed_dict=feed_dict,
1023 options=options,
-> 1024 run_metadata=run_metadata)
1025
1026 for hook in self._hooks:
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, *args, **kwargs)
825
826 def run(self, *args, **kwargs):
--> 827 return self._sess.run(*args, **kwargs)
828
829
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
887 try:
888 result = self._run(None, fetches, feed_dict, options_ptr,
--> 889 run_metadata_ptr)
890 if run_metadata:
891 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1118 if final_fetches or final_targets or (handle and feed_dict_tensor):
1119 results = self._do_run(handle, final_targets, final_fetches,
-> 1120 feed_dict_tensor, options, run_metadata)
1121 else:
1122 results = []
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1315 if handle is None:
1316 return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1317 options, run_metadata)
1318 else:
1319 return self._do_call(_prun_fn, self._session, handle, feeds, fetches)
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1321 def _do_call(self, fn, *args):
1322 try:
-> 1323 return fn(*args)
1324 except errors.OpError as e:
1325 message = compat.as_text(e.message)
~/anaconda3/envs/tf14/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1300 return tf_session.TF_Run(session, options,
1301 feed_dict, fetch_list, target_list,
-> 1302 status, run_metadata)
1303
1304 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: