In [8]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
Write a function that computes the factorial of small numbers using np.arange and np.cumprod.
In [20]:
def np_fact(n):
"""Compute n! = n*(n-1)*...*1 using Numpy."""
np_fact.arange()
np_fact.cumprod()
In [21]:
assert np_fact(0)==1
assert np_fact(1)==1
assert np_fact(10)==3628800
assert [np_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]
Write a function that computes the factorial of small numbers using a Python loop.
In [35]:
def loop_fact(n):
"""Compute n! using a Python for loop."""
n = int()
fact = 1
for i in range(1,n +1):
fact = fact *i
In [36]:
assert loop_fact(0)==1
assert loop_fact(1)==1
assert loop_fact(10)==3628800
assert [loop_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]
Use the %timeit magic to time both versions of this function for an argument of 50. The syntax for %timeit is:
%timeit -n1 -r1 function_to_time()
In [ ]:
# YOUR CODE HERE
raise NotImplementedError()
In the cell below, summarize your timing tests. Which version is faster? Why do you think that version is faster?
YOUR ANSWER HERE