In [1]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
Write a function that computes the factorial of small numbers using np.arange
and np.cumprod
.
In [3]:
def np_fact(n):
"""Compute n! = n*(n-1)*...*1 using Numpy."""
if n==0:
return 1
vals = np.arange(1,n+1,1)
fact = vals.cumprod()
return fact[-1]
np_fact(3)
Out[3]:
In [4]:
assert np_fact(0)==1
assert np_fact(1)==1
assert np_fact(10)==3628800
assert [np_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]
Write a function that computes the factorial of small numbers using a Python loop.
In [15]:
def loop_fact(n):
"""Compute n! using a Python for loop."""
fact = 1
for i in range(1,n+1):
fact=fact*i
return fact
loop_fact(5)
Out[15]:
In [16]:
assert loop_fact(0)==1
assert loop_fact(1)==1
assert loop_fact(10)==3628800
assert [loop_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]
Use the %timeit
magic to time both versions of this function for an argument of 50
. The syntax for %timeit
is:
%timeit -n1 -r1 function_to_time()
In [20]:
%timeit -nint(1.0)
In [ ]:
%timeit -n1 -r1 np_fact(1000000)
%timeit -n1 -r1 loop_fact(1000000)
In the cell below, summarize your timing tests. Which version is faster? Why do you think that version is faster?
The loop runs quicker at low n but given a really big n, numpy beats out the loop by a ton.