"Big Pandas" - Dask from the Inside

Part 1 - Set up

PyData Berlin tutorial, 30 June 2017

Stephen Simmons

These imports are needed to run the full set of examples


In [1]:
# Complete set of Python 3.6 imports used for these examples

# Standard modules
import io
import logging
import lzma
import multiprocessing
import os
import ssl
import sys
import time
import urllib.request
import zipfile

# Third-party modules
import fastparquet      # Needs python-snappy and llvmlite
import graphviz         # To visualize Dask graphs 
import numpy as np
import pandas as pd
import psutil           # Memory stats
import dask
import dask.dataframe as dd
import bokeh.io         # For Dask profile graphs
import seaborn as sns   # For colormaps

# Support multiple lines of output in each cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

# Don't wrap tables
pd.options.display.max_rows = 20
pd.options.display.max_columns = 20
pd.options.display.width = 300

# Show matplotlib and bokeh graphs inline in Jupyter notebook
%matplotlib inline
bokeh.io.output_notebook()

print(sys.version)
np.__version__, pd.__version__, dask.__version__


Loading BokehJS ...
3.6.0 |Continuum Analytics, Inc.| (default, Dec 23 2016, 12:22:00) 
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Out[1]:
('1.11.3', '0.20.1', '0.15.0')