Addressing overfitting and underfitting with validation curves

Validation curves are a useful tool for improving the performance of a model by addressing issues such as overfitting or underfitting. Validation curves plot the training and test accuracies as functions of the values of the model parameters.


In [2]:
# load Breast Cancer Wisconsin dataset
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split

df = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wdbc/wdbc.data', header=None)
X = df.loc[:, 2:].values
y = df.loc[:, 1].values
le = LabelEncoder()
y = le.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=1)

In [10]:
# construct pipeline for logistic regression classifier with l2 regularization

import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

pipe_lr = Pipeline([('scl', StandardScaler()),
                    ('clf', LogisticRegression(penalty='l2', random_state=0))])
pipe_lr.fit(X_train, y_train)
print('Test Accuracy: %.3f' % pipe_lr.score(X_test, y_test))
y_pred = pipe_lr.predict(X_test)


Test Accuracy: 0.982

In [14]:
from sklearn.model_selection import validation_curve

# specify the range of parameter
param_range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]

# specify the parameter C to evaluate in the validation_curve function
train_scores, test_scores = validation_curve(estimator=pipe_lr,
                                             X=X_train,
                                             y=y_train,
                                             param_name='clf__C',
                                             param_range=param_range,
                                             cv=10)

In [15]:
# calculate and plot the average training and cross-validation accuracies and the corresponding standard deviations

import numpy as np

train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)

plt.plot(param_range, train_mean, 
         color='blue', marker='o', 
         markersize=5, label='training accuracy')

plt.fill_between(param_range, train_mean + train_std,
                 train_mean - train_std, alpha=0.15,
                 color='blue')

plt.plot(param_range, test_mean, 
         color='green', linestyle='--', 
         marker='s', markersize=5, 
         label='validation accuracy')

plt.fill_between(param_range, 
                 test_mean + test_std,
                 test_mean - test_std, 
                 alpha=0.15, color='green')

plt.grid()
plt.xscale('log')
plt.legend(loc='lower right')
plt.xlabel('Parameter C')
plt.ylabel('Accuracy')
plt.ylim([0.8, 1.0])
plt.show()