This notebook was prepared by Donne Martin. Source and license info is on GitHub.

Data Structures

  • tuple
  • list
  • dict
  • set

tuple

A tuple is a one dimensional, fixed-length, immutable sequence.

Create a tuple:


In [1]:
tup = (1, 2, 3)
tup


Out[1]:
(1, 2, 3)

Convert to a tuple:


In [2]:
list_1 = [1, 2, 3]
type(tuple(list_1))


Out[2]:
tuple

Create a nested tuple:


In [3]:
nested_tup = ([1, 2, 3], (4, 5))
nested_tup


Out[3]:
([1, 2, 3], (4, 5))

Access a tuple's elements by index O(1):


In [4]:
nested_tup[0]


Out[4]:
[1, 2, 3]

Although tuples are immutable, their contents can contain mutable objects.

Modify a tuple's contents:


In [5]:
nested_tup[0].append(4)
nested_tup[0]


Out[5]:
[1, 2, 3, 4]

Concatenate tuples by creating a new tuple and copying objects:


In [6]:
(1, 3, 2) + (4, 5, 6)


Out[6]:
(1, 3, 2, 4, 5, 6)

Multiply tuples to copy references to objects (objects themselves are not copied):


In [7]:
('foo', 'bar') * 2


Out[7]:
('foo', 'bar', 'foo', 'bar')

Unpack tuples:


In [8]:
a, b = nested_tup
a, b


Out[8]:
([1, 2, 3, 4], (4, 5))

Unpack nested tuples:


In [9]:
(a, b, c, d), (e, f) = nested_tup
a, b, c, d, e, f


Out[9]:
(1, 2, 3, 4, 4, 5)

A common use of variable unpacking is when iterating over sequences of tuples or lists:


In [10]:
seq = [( 1, 2, 3), (4, 5, 6), (7, 8, 9)] 
for a, b, c in seq: 
    print(a, b, c)


(1, 2, 3)
(4, 5, 6)
(7, 8, 9)

list

A list is a one dimensional, variable-length, mutable sequence.

Create a list:


In [11]:
list_1 = [1, 2, 3]
list_1


Out[11]:
[1, 2, 3]

Convert to a list:


In [12]:
type(list(tup))


Out[12]:
list

Create a nested list:


In [13]:
nested_list = [(1, 2, 3), [4, 5]]
nested_list


Out[13]:
[(1, 2, 3), [4, 5]]

Access a list's elements by index O(1):


In [14]:
nested_list[1]


Out[14]:
[4, 5]

Append an element to a list O(1):


In [15]:
nested_list.append(6)
nested_list


Out[15]:
[(1, 2, 3), [4, 5], 6]

Insert an element to a list at a specific index (note that insert is expensive as it has to shift subsequent elements O(n)):


In [16]:
nested_list.insert(0, 'start')
nested_list


Out[16]:
['start', (1, 2, 3), [4, 5], 6]

Pop is expensive as it has to shift subsequent elements O(n). The operation is O(1) if pop is used for the last element.

Remove and return an element from a specified index:


In [17]:
nested_list.pop(0)
nested_list


Out[17]:
[(1, 2, 3), [4, 5], 6]

Locates the first such value and remove it O(n):


In [18]:
nested_list.remove((1, 2, 3))
nested_list


Out[18]:
[[4, 5], 6]

Check if a list contains a value O(n):


In [19]:
6 in nested_list


Out[19]:
True

Concatenate lists by creating a new list and copying objects:


In [20]:
[1, 3, 2] + [4, 5, 6]


Out[20]:
[1, 3, 2, 4, 5, 6]

Extend a list by appending elements (faster than concatenating lists, as it does not have to create a new list):


In [21]:
nested_list.extend([7, 8, 9])
nested_list


Out[21]:
[[4, 5], 6, 7, 8, 9]

dict

A dict is also known as a hash map or associative array. A dict is a mutable collection of key-value pairs.

Note: Big O complexities are listed as average case, with most worst case complexities being O(n).

Create a dict:


In [22]:
dict_1 = { 'a' : 'foo', 'b' : [0, 1, 2, 3] }
dict_1


Out[22]:
{'a': 'foo', 'b': [0, 1, 2, 3]}

Access a dict's elements by index O(1)


In [23]:
dict_1['b']


Out[23]:
[0, 1, 2, 3]

Insert or set a dict's elements by index O(1):


In [24]:
dict_1[5] = 'bar'
dict_1


Out[24]:
{5: 'bar', 'a': 'foo', 'b': [0, 1, 2, 3]}

Check if a dict contains a key O(1):


In [25]:
5 in dict_1


Out[25]:
True

Delete a value from a dict O(1):


In [26]:
dict_2 = dict(dict_1)
del dict_2[5]
dict_2


Out[26]:
{'a': 'foo', 'b': [0, 1, 2, 3]}

Remove and return an element from a specified index O(1):


In [27]:
value = dict_2.pop('b')
print(value)
print(dict_2)


[0, 1, 2, 3]
{'a': 'foo'}

Get or pop can be called with a default value if the key is not found. By default, get() will return None and pop() will throw an exception if the key is not found.


In [28]:
value = dict_1.get('z', 0)
value


Out[28]:
0

Return a default value if the key is not found:


In [29]:
print(dict_1.setdefault('b', None))
print(dict_1.setdefault('z', None))


[0, 1, 2, 3]
None

By contrast to setdefault(), defaultdict lets you specify the default when the container is initialized, which works well if the default is appropriate for all keys:


In [30]:
from collections import defaultdict

seq = ['foo', 'bar', 'baz']
first_letter = defaultdict(list)
for elem in seq:
    first_letter[elem[0]].append(elem)
first_letter


Out[30]:
defaultdict(<type 'list'>, {'b': ['bar', 'baz'], 'f': ['foo']})

dict keys must be "hashable", i.e. they must be immutable objects like scalars (int, float, string) or tuples whose objects are all immutable. Lists are mutable and therefore are not hashable, although you can convert the list portion to a tuple as a quick fix.


In [31]:
print(hash('string'))
print(hash((1, 2, (3, 4))))


-9167918882415130555
-2725224101759650258

Get the list of keys in no particular order (although keys() outputs the keys in the same order). In Python 3, keys() returns an iterator instead of a list.


In [32]:
dict_1.keys()


Out[32]:
['a', 'b', 5, 'z']

Get the list of values in no particular order (although values() outputs the keys in the same order). In Python 3, keys() returns an iterator instead of a list.


In [33]:
dict_1.values()


Out[33]:
['foo', [0, 1, 2, 3], 'bar', None]

Iterate through a dictionary's keys and values:


In [34]:
for key, value in dict_1.items():
    print key, value


a foo
b [0, 1, 2, 3]
5 bar
z None

Merge one dict into another:


In [35]:
dict_1.update({'e' : 'elephant', 'f' : 'fish'})
dict_1


Out[35]:
{5: 'bar',
 'a': 'foo',
 'b': [0, 1, 2, 3],
 'e': 'elephant',
 'f': 'fish',
 'z': None}

Pair up two sequences element-wise in a dict:


In [36]:
mapping = dict(zip(range(7), reversed(range(7))))
mapping


Out[36]:
{0: 6, 1: 5, 2: 4, 3: 3, 4: 2, 5: 1, 6: 0}

set

A set is an unordered sequence of unique elements.

Create a set:


In [37]:
set_1 = set([0, 1, 2, 3, 4, 5])
set_1


Out[37]:
{0, 1, 2, 3, 4, 5}

In [38]:
set_2 = {1, 2, 3, 5, 8, 13}
set_2


Out[38]:
{1, 2, 3, 5, 8, 13}

Sets support set operations like union, intersection, difference, and symmetric difference.

Union O(len(set_1) + len(set_2)):


In [39]:
set_1 | set_2


Out[39]:
{0, 1, 2, 3, 4, 5, 8, 13}

Intersection O(min(len(set_1), len(set_2)):


In [40]:
set_1 & set_2


Out[40]:
{1, 2, 3, 5}

Difference O(len(set_1)):


In [41]:
set_1 - set_2


Out[41]:
{0, 4}

Symmetric Difference O(len(set_1)):


In [42]:
set_1 ^ set_2


Out[42]:
{0, 4, 8, 13}

Subset O(len(set_3)):


In [43]:
set_3 = {1, 2, 3}
set_3.issubset(set_2)


Out[43]:
True

Superset O(len(set_3)):


In [44]:
set_2.issuperset(set_3)


Out[44]:
True

Equal O(min(len(set_1), len(set_2)):


In [45]:
{1, 2, 3} == {3, 2, 1}


Out[45]:
True