In [1]:
%load_ext rmagic
import numpy as np
In [2]:
reducedK = np.load('reduced_known0_4.0.npy')
reducedU = np.load('reduced_unknown0_4.0.npy')
covtest = np.load('covtest0_4.0.npy')
spacings = np.load('spacings0_4.0.npy')
hypotheses = np.load('hypotheses0_4.0.npy')
In [3]:
%%R -i reducedU,reducedK,covtest,spacings,hypotheses -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
plot(ecdf(spacings[,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[,i]), col='green', add=TRUE)
plot(ecdf(covtest[,i]), col='red', add=TRUE)
plot(ecdf(reducedU[,i]), col='blue', add=TRUE)
}
In [4]:
reducedK = np.load('reduced_known1_4.0.npy')
reducedU = np.load('reduced_unknown1_4.0.npy')
covtest = np.load('covtest1_4.0.npy')
spacings = np.load('spacings1_4.0.npy')
hypotheses = np.load('hypotheses1_4.0.npy')
first_null = []
for h in hypotheses:
h_cumsum = h.cumsum()
try:
idx = min(np.nonzero(h_cumsum >= 1)[0]) + 1
except ValueError:
idx = hypotheses.shape[1] + 10
first_null.append(idx)
first_null = np.array(first_null) + 1
In [5]:
%%R -i reducedU,reducedK,covtest,spacings,first_null,hypotheses -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
plot(ecdf(spacings[,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[,i]), col='green', add=TRUE)
plot(ecdf(covtest[,i]), col='red', add=TRUE)
plot(ecdf(reducedU[,i]), col='blue', add=TRUE)
}
In [6]:
%%R -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
null_Ps = (i >= first_null)
if (sum(null_Ps) > 0) {
plot(ecdf(spacings[null_Ps,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[null_Ps,i]), col='green', add=TRUE)
plot(ecdf(covtest[null_Ps,i]), col='red', add=TRUE)
plot(ecdf(reducedU[null_Ps,i]), col='blue', add=TRUE)
}
}
In [7]:
%%R -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
alt_Ps = (hypotheses[,i] == 1)
if (sum(alt_Ps) > 0) {
plot(ecdf(spacings[alt_Ps,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[alt_Ps,i]), col='green', add=TRUE)
plot(ecdf(covtest[alt_Ps,i]), col='red', add=TRUE)
plot(ecdf(reducedU[alt_Ps,i]), col='blue', add=TRUE)
}
}
In [8]:
reducedK = np.load('reduced_known2_4.0.npy')
reducedU = np.load('reduced_unknown2_4.0.npy')
covtest = np.load('covtest2_4.0.npy')
spacings = np.load('spacings2_4.0.npy')
hypotheses = np.load('hypotheses2_4.0.npy')
first_null = []
for h in hypotheses:
h_cumsum = h.cumsum()
try:
idx = min(np.nonzero(h_cumsum >= 2)[0]) + 1
except ValueError:
idx = hypotheses.shape[1] + 10
first_null.append(idx)
first_null = np.array(first_null) + 1
In [9]:
%%R -i reducedU,reducedK,covtest,spacings,first_null,hypotheses -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
plot(ecdf(spacings[,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[,i]), col='green', add=TRUE)
plot(ecdf(covtest[,i]), col='red', add=TRUE)
plot(ecdf(reducedU[,i]), col='blue', add=TRUE)
}
In [10]:
%%R -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
null_Ps = (i >= first_null)
if (sum(null_Ps) > 0) {
plot(ecdf(spacings[null_Ps,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[null_Ps,i]), col='green', add=TRUE)
plot(ecdf(covtest[null_Ps,i]), col='red', add=TRUE)
plot(ecdf(reducedU[null_Ps,i]), col='blue', add=TRUE)
}
}
In [11]:
%%R -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
alt_Ps = (hypotheses[,i] == 1)
if (sum(alt_Ps) > 0) {
plot(ecdf(spacings[alt_Ps,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[alt_Ps,i]), col='green', add=TRUE)
plot(ecdf(covtest[alt_Ps,i]), col='red', add=TRUE)
plot(ecdf(reducedU[alt_Ps,i]), col='blue', add=TRUE)
}
}
In [12]:
reducedK = np.load('reduced_known5_4.0.npy')
reducedU = np.load('reduced_unknown5_4.0.npy')
covtest = np.load('covtest5_4.0.npy')
spacings = np.load('spacings5_4.0.npy')
hypotheses = np.load('hypotheses5_4.0.npy')
first_null = []
for h in hypotheses:
h_cumsum = h.cumsum()
try:
idx = min(np.nonzero(h_cumsum >= 5)[0]) + 1
except ValueError:
idx = hypotheses.shape[1] + 10
first_null.append(idx)
first_null = np.array(first_null) + 1
In [13]:
%%R -i reducedU,reducedK,covtest,spacings,first_null,hypotheses -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
plot(ecdf(spacings[,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[,i]), col='green', add=TRUE)
plot(ecdf(covtest[,i]), col='red', add=TRUE)
plot(ecdf(reducedU[,i]), col='blue', add=TRUE)
}
In [14]:
%%R -h 800 -w 800
par(mfrow=c(2,2))
for (i in 1:9) {
null_Ps = (i >= first_null)
if (sum(null_Ps) > 0) {
plot(ecdf(spacings[null_Ps,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[null_Ps,i]), col='green', add=TRUE)
plot(ecdf(covtest[null_Ps,i]), col='red', add=TRUE)
plot(ecdf(reducedU[null_Ps,i]), col='blue', add=TRUE)
}
}
In [15]:
%%R -h 800 -w 800
par(mfrow=c(3,3))
for (i in 1:9) {
alt_Ps = (hypotheses[,i] == 1)
if (sum(alt_Ps) > 0) {
plot(ecdf(spacings[alt_Ps,i]), col='orange', main=paste('ECDF Step', i))
plot(ecdf(reducedK[alt_Ps,i]), col='green', add=TRUE)
plot(ecdf(covtest[alt_Ps,i]), col='red', add=TRUE)
plot(ecdf(reducedU[alt_Ps,i]), col='blue', add=TRUE)
}
}
In [15]: