The Theta Model

The Theta model of Assimakopoulos & Nikolopoulos (2000) is a simple method for forecasting the involves fitting two $\theta$-lines, forecasting the lines using a Simple Exponential Smoother, and then combining the forecasts from the two lines to produce the final forecast. The model is implemented in steps:

  1. Test for seasonality
  2. Deseasonalize if seasonality detected
  3. Estimate $\alpha$ by fitting a SES model to the data and $b_0$ by OLS.
  4. Forecast the series
  5. Reseasonalize if the data was deseasonalized.

The seasonality test examines the ACF at the seasonal lag $m$. If this lag is significantly different from zero then the data is deseasonalize using statsmodels.tsa.seasonal_decompose use either a multiplicative method (default) or additive.

The parameters of the model are $b_0$ and $\alpha$ where $b_0$ is estimated from the OLS regression

$$ X_t = a_0 + b_0 (t-1) + \epsilon_t $$

and $\alpha$ is the SES smoothing parameter in

$$ \tilde{X}_t = (1-\alpha) X_t + \alpha \tilde{X}_{t-1} $$

The forecasts are then

$$ \hat{X}_{T+h|T} = \frac{\theta-1}{\theta} \hat{b}_0 \left[h - 1 + \frac{1}{\hat{\alpha}} - \frac{(1-\hat{\alpha})^T}{\hat{\alpha}} \right] + \tilde{X}_{T+h|T} $$

Ultimately $\theta$ only plays a role in determining how much the trend is damped. If $\theta$ is very large, then the forecast of the model is identical to that from an Integrated Moving Average with a drift,

$$ X_t = X_{t-1} + b_0 + (\alpha-1)\epsilon_{t-1} + \epsilon_t. $$

Finally, the forecasts are reseasonalized if needed.

This module is based on:

  • Assimakopoulos, V., & Nikolopoulos, K. (2000). The theta model: a decomposition approach to forecasting. International journal of forecasting, 16(4), 521-530.
  • Hyndman, R. J., & Billah, B. (2003). Unmasking the Theta method. International Journal of Forecasting, 19(2), 287-290.
  • Fioruci, J. A., Pellegrini, T. R., Louzada, F., & Petropoulos, F. (2015). The optimized theta method. arXiv preprint arXiv:1503.03529.

Imports

We start with the standard set of imports and some tweaks to the default matplotlib style.


In [1]:
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import matplotlib.pyplot as plt
import seaborn as sns
plt.rc("figure",figsize=(16,8))
plt.rc("font",size=15)
plt.rc("lines",linewidth=3)
sns.set_style("darkgrid")


/home/travis/miniconda/envs/statsmodels-test/lib/python3.7/site-packages/pandas_datareader/compat/__init__.py:7: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
  from pandas.util.testing import assert_frame_equal

Load some Data

We will first look at housing starts using US data. This series is clearly seasonal but does not have a clear trend during the same.


In [2]:
reader = pdr.fred.FredReader(["HOUST"], start="1980-01-01", end="2020-04-01")
data = reader.read()
housing = data.HOUST
ax = housing.plot()


We fit specify the model without any options and fit it. The summary shows that the data was deseasonalized using the multiplicative method. The drift is modest and negative, and the smoothing parameter is fairly low.


In [3]:
from statsmodels.tsa.forecasting.theta import ThetaModel
tm = ThetaModel(housing)
res = tm.fit()
res.summary()


Out[3]:
ThetaModel Results
Dep. Variable: HOUST No. Observations: 484
Method: OLS/SES Deseasonalized: True
Date: Mon, 01 Jun 2020 Deseas. Method: Multiplicative
Time: 23:42:26 Period: 12
Sample: 01-01-1980
- 04-01-2020
Parameter Estimates
Parameters
b0 -0.9160954504499565
alpha 0.6187709552814975

The model is first and foremost a forecasting method. Forecasts are produced using the forecast method from fitted model. Below we produce a hedgehog plot by forecasting 2-years ahead every 2 years.

Note: the default $\theta$ is 2.


In [4]:
forecasts = {"housing": housing}
for year in range(1995, 2020, 2):
    sub = housing[:str(year)]
    res = ThetaModel(sub).fit()
    fcast = res.forecast(24)
    forecasts[str(year)] = fcast
forecasts = pd.DataFrame(forecasts)
ax = forecasts["1995":].plot(legend=False)
children = ax.get_children()
children[0].set_linewidth(4)
children[0].set_alpha(0.3)
children[0].set_color("#000000")
ax.set_title("Housing Starts")
plt.tight_layout(pad=1.0)


/home/travis/build/statsmodels/statsmodels/statsmodels/tsa/deterministic.py:152: UserWarning: Only PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Int64Indexes with a unit increment support extending. The index is set will contain the position relative to the data length.
  UserWarning,

We could alternatively fir the log of the data. Here it makes more sense to force the deseasonalizing to use the additive method, if needed. We also fit the model parameters using MLE. This method fits the IMA

$$ X_t = X_{t-1} + \gamma\epsilon_{t-1} + \epsilon_t $$

where $\hat{\alpha}$ = $\min(\hat{\gamma}+1, 0.9998)$ using statsmodels.tsa.SARIMAX. The parameters are similar although the drift is closer to zero.


In [5]:
tm = ThetaModel(np.log(housing), method="additive")
res = tm.fit(use_mle=True)
res.summary()


Out[5]:
ThetaModel Results
Dep. Variable: HOUST No. Observations: 484
Method: MLE Deseasonalized: True
Date: Mon, 01 Jun 2020 Deseas. Method: Additive
Time: 23:42:28 Period: 12
Sample: 01-01-1980
- 04-01-2020
Parameter Estimates
Parameters
b0 -0.0004947275071231262
alpha 0.6729411631173596

The forecast only depends on the forecast trend component, $$ \hat{b}_0 \left[h - 1 + \frac{1}{\hat{\alpha}}

                 - \frac{(1-\hat{\alpha})^T}{\hat{\alpha}} \right],

$$

the forecast from the SES (which does not change with the horizon), and the seasonal. These three components are available using the forecast_components. This allows forecasts to be constructed using multiple choices of $\theta$ using the weight expression above.


In [6]:
res.forecast_components(12)


/home/travis/build/statsmodels/statsmodels/statsmodels/tsa/deterministic.py:152: UserWarning: Only PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Int64Indexes with a unit increment support extending. The index is set will contain the position relative to the data length.
  UserWarning,
Out[6]:
trend ses seasonal
485 -0.000735 6.933021 -0.007323
486 -0.001230 6.933021 0.002208
487 -0.001725 6.933021 -0.004325
488 -0.002219 6.933021 -0.004923
489 -0.002714 6.933021 -0.004000
490 -0.003209 6.933021 0.009694
491 -0.003704 6.933021 0.000505
492 -0.004198 6.933021 0.007037
493 -0.004693 6.933021 0.010266
494 -0.005188 6.933021 -0.003954
495 -0.005682 6.933021 -0.001851
496 -0.006177 6.933021 -0.003334

Personal Consumption Expenditure

We next look at personal consumption expenditure. This series has a clear seasonal component and a drift.


In [7]:
reader = pdr.fred.FredReader(["NA000349Q"], start="1980-01-01", end="2020-04-01")
pce = reader.read()
pce.columns = ["PCE"]
_ = pce.plot()


Since this series is always positive, we model the $\ln$.


In [8]:
mod = ThetaModel(np.log(pce))
res = mod.fit()
res.summary()


Out[8]:
ThetaModel Results
Dep. Variable: PCE No. Observations: 161
Method: OLS/SES Deseasonalized: True
Date: Mon, 01 Jun 2020 Deseas. Method: Multiplicative
Time: 23:42:29 Period: 4
Sample: 01-01-1980
- 01-01-2020
Parameter Estimates
Parameters
b0 0.013089135324494463
alpha 0.9998843994548402

Next we explore differenced in the forecast as $\theta$ changes. When $\theta$ is close to 1, the drift is nearly absent. As $\theta$ increases, the drift becomes more obvious.


In [9]:
forecasts = pd.DataFrame({"ln PCE":np.log(pce.PCE),
                          "theta=1.2": res.forecast(12, theta=1.2),
                          "theta=2": res.forecast(12),
                          "theta=3": res.forecast(12, theta=3),
                          "No damping": res.forecast(12, theta=np.inf)
                         })
_ = forecasts.tail(36).plot()
plt.title("Forecasts of ln PCE")
plt.tight_layout(pad=1.0)


/home/travis/build/statsmodels/statsmodels/statsmodels/tsa/deterministic.py:152: UserWarning: Only PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Int64Indexes with a unit increment support extending. The index is set will contain the position relative to the data length.
  UserWarning,

Finally, plot_predict can be used to visualize the predictions and prediction intervals which are constructed assuming the IMA is true.


In [10]:
ax = res.plot_predict(24, theta=2)


/home/travis/build/statsmodels/statsmodels/statsmodels/tsa/deterministic.py:152: UserWarning: Only PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Int64Indexes with a unit increment support extending. The index is set will contain the position relative to the data length.
  UserWarning,
/home/travis/build/statsmodels/statsmodels/statsmodels/tsa/deterministic.py:152: UserWarning: Only PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Int64Indexes with a unit increment support extending. The index is set will contain the position relative to the data length.
  UserWarning,

We conclude be producing a hedgehog plot using 2-year non-overlapping samples.


In [11]:
ln_pce = np.log(pce.PCE)
forecasts = {"ln PCE": ln_pce}
for year in range(1995,2020,3):
    sub = ln_pce[:str(year)]
    res = ThetaModel(sub).fit()
    fcast = res.forecast(12)
    forecasts[str(year)] = fcast
forecasts = pd.DataFrame(forecasts)
ax = forecasts["1995":].plot(legend=False)
children = ax.get_children()
children[0].set_linewidth(4)
children[0].set_alpha(0.3)
children[0].set_color("#000000")
ax.set_title("ln PCE")
plt.tight_layout(pad=1.0)