In [1]:
%pylab inline
import copy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.datasets import mnist, cifar10
from keras.models import Sequential, Graph
from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape
from keras.optimizers import SGD, RMSprop
from keras.utils import np_utils
from keras.regularizers import l2
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D, AveragePooling2D
from keras.callbacks import EarlyStopping
from keras.preprocessing.image import ImageDataGenerator
from keras.layers.normalization import BatchNormalization
from PIL import Image
Load the MNIST dataset, flatten the images, convert the class labels, and scale the data.
In [2]:
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32') / 255
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32') / 255
Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)
In [44]:
model = Sequential()
# Layer 1
model.add(Convolution2D(96, 11, 11, input_shape = (1,28,28), border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Layer 2
model.add(Convolution2D(256, 5, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Layer 3
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, border_mode='same'))
model.add(Activation('relu'))
# Layer 4
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Activation('relu'))
# Layer 5
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Layer 6
model.add(Flatten())
model.add(Dense(3072, init='glorot_normal'))
model.add(Activation('relu'))
model.add(Dropout(0.5))
# Layer 7
model.add(Dense(4096, init='glorot_normal'))
model.add(Activation('relu'))
model.add(Dropout(0.5))
# Layer 8
model.add(Dense(10, init='glorot_normal'))
model.add(Activation('softmax'))
As you can imagine, training this model (even on MNIST-10) is quite time consuming. I'll run just one Epoch with 10 samples to show how it works.
In [45]:
model.compile(loss='categorical_crossentropy', optimizer=RMSprop())
model.fit(X_train[:10], Y_train[:10], batch_size=1, nb_epoch=1,
verbose=1, show_accuracy=True)
Out[45]:
The true power of this model really comes out when it is used on a larger corpus of images, such as ILSVRC and MS COCO, with images having a larger spatial size.
In [13]:
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
We then load the weights of the model from a file (you can download this from the course website; it is not small, coming in at about half a gigabyte). We then have to compile the model, even though we have no intention of actually training it. This is because the compilation in part sets the forward propigation code, which we will need to do predictions.
In [14]:
model.load_weights("../../../class_data/keras/vgg19_weights.h5")
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')
We will also load some metadata, that gives class labels to the output:
In [15]:
synsets = []
with open("../../../class_data/keras/synset_words.txt", "r") as f:
synsets += f.readlines()
synsets = [x.replace("\n","") for x in synsets]
Now lets read in an image of a lion:
In [27]:
im = Image.open('img/lion.jpg').resize((224, 224), Image.ANTIALIAS)
plt.figure(figsize=(4, 4))
plt.axis("off")
plt.imshow(im)
im = np.array(im).astype(np.float32)
# scale the image, according to the format used in training
im[:,:,0] -= 103.939
im[:,:,1] -= 116.779
im[:,:,2] -= 123.68
im = im.transpose((2,0,1))
im = np.expand_dims(im, axis=0)
And now predict the class label from the VGG-19 model:
In [28]:
out = model.predict(im)
for index in np.argsort(out)[0][::-1][:10]:
print("%01.4f - %s" % (out[0][index], synsets[index].replace("\n","")))
A relatively impressive result for an out of sample image!
In [46]:
model = Graph()
model.add_input(name='n00', input_shape=(1,28,28))
# layer 1
model.add_node(Convolution2D(64,1,1, activation='relu'), name='n11', input='n00')
model.add_node(Flatten(), name='n11_f', input='n11')
model.add_node(Convolution2D(96,1,1, activation='relu'), name='n12', input='n00')
model.add_node(Convolution2D(16,1,1, activation='relu'), name='n13', input='n00')
model.add_node(MaxPooling2D((3,3),strides=(2,2)), name='n14', input='n00')
# layer 2
model.add_node(Convolution2D(128,3,3, activation='relu'), name='n22', input='n12')
model.add_node(Flatten(), name='n22_f', input='n22')
model.add_node(Convolution2D(32,5,5, activation='relu'), name='n23', input='n13')
model.add_node(Flatten(), name='n23_f', input='n23')
model.add_node(Convolution2D(32,1,1, activation='relu'), name='n24', input='n14')
model.add_node(Flatten(), name='n24_f', input='n24')
# output layer
model.add_node(Dense(1024, activation='relu'), name='layer4',
inputs=['n11_f', 'n22_f', 'n23_f', 'n24_f'], merge_mode='concat')
model.add_node(Dense(10, activation='softmax'), name='layer5', input='layer4')
model.add_output(name='output1',input='layer5')
In [48]:
model.compile(loss={'output1':'categorical_crossentropy'}, optimizer=RMSprop())
model.fit({'n00':X_train[:100], 'output1':Y_train[:100]}, nb_epoch=1, verbose=1)
Out[48]:
In [6]:
model = Sequential()
model.add(Convolution2D(6, 5, 5, border_mode='valid', input_shape = (1, 28, 28)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(Convolution2D(16, 5, 5, border_mode='valid'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(Dropout(0.5))
model.add(Convolution2D(120, 1, 1, border_mode='valid'))
model.add(Flatten())
model.add(Dense(84))
model.add(Activation("relu"))
model.add(Dense(10))
model.add(Activation('softmax'))
In [ ]:
model.compile(loss='categorical_crossentropy', optimizer=RMSprop())
model.fit(X_train, Y_train, batch_size=32, nb_epoch=20,
verbose=1, show_accuracy=True, validation_data=(X_test, Y_test))
In [36]:
model = Graph()
model.add_input(name='input0', input_shape=(1,28,28))
model.add_node(Flatten(), name='input1', input='input0')
model.add_node(Dense(50), name='input2', input='input1')
model.add_node(Dense(50, activation='relu'), name='middle1', input='input2')
model.add_node(Dense(50, activation='relu'), name='middle2', input='middle1')
model.add_node(Dense(512, activation='relu'), name='top1',
inputs=['input2', 'middle2'], merge_mode='sum')
model.add_node(Dense(10, activation='softmax'), name='top2', input='top1')
model.add_output(name='top3',input='top2')
In [37]:
model.compile(loss={'top3':'categorical_crossentropy'}, optimizer=RMSprop())
model.fit({'input0':X_train, 'top3':Y_train}, nb_epoch=25, verbose=1,
validation_data={'input0':X_test, 'top3':Y_test})
Out[37]: