In [1]:
import sys
sys.path.append('/Users/spacecoffin/Development')

import GravelKicker as gk
import librosa
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import sklearn as sk

from datetime import datetime
from supriya.tools import nonrealtimetools

%matplotlib inline

In [2]:
this_dir = '/Users/spacecoffin/Development/GravelKicker/__gen_files'

Loading utility

Add: join old df to new df


In [ ]:
dir_list = os.listdir(path=this_dir)
_pickle_path = os.path.join(this_dir, "df.p")

if "df.p" in dir_list:
    #_pickle_path = os.path.join(this_dir, "df.p")
    _old_df = pd.read_pickle(_pickle_path)
    _pickle_dir = make_out_dir(this_dir, "pickle_files")
    dt_identifier = datetime.now().strftime("df-%Y_%m_%d_%H%M%S.p")
    _old_pickle_path = os.path.join(_pickle_dir, dt_identifier)
    pd.to_pickle(_old_pickle_path)

In [3]:
pmtx = gk.generator.gendy1.gen_params(dists=(0., 0.), rows=100)

In [4]:
df = gk.generator.gendy1.format_params(pmtx)

In [5]:
df


Out[5]:
adparam ampscale ddparam durscale ampdist durdist knum minfrequency maxfrequency init_cps hash
0 0.635286 0.489605 0.567881 0.369180 0.0 0.0 10.0 155.563492 164.813778 16.0 46a5ed1567d7c2b19f1573c2e928c0fa
1 0.696958 0.800929 0.685938 0.171620 0.0 0.0 14.0 3135.963488 3322.437581 16.0 22cd27651535a9069da51982b3f4590e
2 0.429322 0.360878 0.995214 0.278283 0.0 0.0 11.0 523.251131 1479.977691 16.0 a246139c091e5f088436c0a5cd38f534
3 0.653165 0.266634 0.949110 0.821236 0.0 0.0 14.0 12.249857 65.406391 16.0 5ea8085bc27437faa7f501967f8ccf3e
4 0.714823 0.079651 0.797190 0.961920 0.0 0.0 11.0 25.956544 523.251131 16.0 7cc0ec35c91eb776016c96d08695c62b
5 0.811914 0.929303 0.444593 0.715531 0.0 0.0 14.0 207.652349 698.456463 16.0 1111729baf465e61b90e2fd712665ed6
6 0.585464 0.433918 0.976519 0.932159 0.0 0.0 12.0 77.781746 311.126984 16.0 87c2c2e6073966872b8a420c72b7d4b4
7 0.818929 0.125319 0.168451 0.464151 0.0 0.0 10.0 17.323914 87.307058 16.0 1ba0e832e3193369fce413b0a3f4499d
8 0.533845 0.666820 0.586361 0.163195 0.0 0.0 12.0 69.295658 97.998859 16.0 c6f7f77b9390a1359c2b18ec08d13476
9 0.859485 0.380770 0.747093 0.868054 0.0 0.0 12.0 220.000000 783.990872 16.0 540d2ad9b451e20eeb01c09961a056c4
10 0.556470 0.600817 0.674834 0.855629 0.0 0.0 12.0 92.498606 164.813778 16.0 7671e30e12f4528e77c479e7116cd56b
11 0.493465 0.100789 0.956789 0.636812 0.0 0.0 9.0 739.988845 2959.955382 16.0 441ef891902a91235372f241a81e4d01
12 0.931189 0.142806 0.012430 0.617764 0.0 0.0 13.0 13.750000 92.498606 16.0 026b99729ab158d6e31760cb948176e1
13 0.704062 0.070166 0.208522 0.143551 0.0 0.0 16.0 123.470825 174.614116 16.0 5dee16d33cf2f0d37ac72df3b7fb87c0
14 0.247245 0.470690 0.509268 0.706318 0.0 0.0 14.0 3951.066410 4186.009045 16.0 f8c3bbbec6a33150fdad13020434400d
15 0.007715 0.859809 0.416540 0.376740 0.0 0.0 10.0 65.406391 195.997718 16.0 3764c636842052a5b6f72d7fa795a84c
16 0.480551 0.422815 0.035301 0.373041 0.0 0.0 12.0 1661.218790 3135.963488 16.0 a975c3e16e995431d02a346f60a0ae56
17 0.557386 0.916642 0.777535 0.607154 0.0 0.0 8.0 41.203445 207.652349 16.0 0ad77760f2867ce14e18cd0c00d80c1c
18 0.400411 0.580839 0.066132 0.061830 0.0 0.0 12.0 146.832384 329.627557 16.0 a9265d6db4e7688b2bc1860b32e60b77
19 0.724139 0.625939 0.150455 0.146902 0.0 0.0 12.0 13.750000 24.499715 16.0 1df5437e27502948549d91761bd0269d
20 0.483189 0.379642 0.929342 0.963592 0.0 0.0 12.0 146.832384 195.997718 16.0 b9c64ddaea53779fef90173367a86141
21 0.008176 0.635240 0.330755 0.215888 0.0 0.0 9.0 9.722718 41.203445 16.0 f3b86cc42a09b3ee093adc48b8d3092d
22 0.277841 0.840331 0.042573 0.653451 0.0 0.0 10.0 24.499715 36.708096 16.0 8d4c989f35030c2c0023af1712ada80e
23 0.065132 0.846646 0.828625 0.951987 0.0 0.0 11.0 9.177024 18.354048 16.0 e2c54ade2953811b8ccb6b178eb6e415
24 0.946532 0.696673 0.621477 0.046002 0.0 0.0 8.0 391.995436 1174.659072 16.0 e99c72c1f72717f9dae9f4f51bd27dff
25 0.202591 0.853369 0.690199 0.828766 0.0 0.0 14.0 29.135235 116.540940 16.0 de2edf9a7a65caa135cbae222f61fd18
26 0.359538 0.090099 0.025959 0.715595 0.0 0.0 13.0 587.329536 739.988845 16.0 9683bf2b6d7d0fe48f181953ddfa7a19
27 0.252558 0.870870 0.726149 0.269884 0.0 0.0 12.0 69.295658 110.000000 16.0 69b32ab7e74b110e227182875824369c
28 0.997314 0.620051 0.016455 0.900552 0.0 0.0 11.0 8.175799 21.826764 16.0 83572cb6bdd579c05aac08608fbd92d6
29 0.586763 0.625249 0.096503 0.671703 0.0 0.0 13.0 30.867706 207.652349 16.0 c54059162d7c363f6712f30f41acd8b3
... ... ... ... ... ... ... ... ... ... ... ...
70 0.026503 0.493471 0.360334 0.993795 0.0 0.0 11.0 130.812783 155.563492 16.0 5acca8e8f2d1485381dab7da9d1f23c6
71 0.619612 0.021298 0.988322 0.548706 0.0 0.0 13.0 1174.659072 1760.000000 16.0 e4fb59d9b5f353424badcfda11575719
72 0.771522 0.575452 0.896984 0.971402 0.0 0.0 12.0 659.255114 830.609395 16.0 d01525fb50c9251c84b74b559d5f687c
73 0.593228 0.626976 0.767520 0.333170 0.0 0.0 11.0 30.867706 246.941651 16.0 3d29128dadffcd27bc17b96653887054
74 0.545711 0.146602 0.241695 0.242677 0.0 0.0 10.0 1046.502261 1864.655046 16.0 471f673e529eba3b5b384ff499a284c7
75 0.153862 0.758355 0.253736 0.544259 0.0 0.0 10.0 11.562326 18.354048 16.0 c2875de879437933e19fb28ee70dc00c
76 0.730071 0.829273 0.068024 0.366864 0.0 0.0 12.0 24.499715 130.812783 16.0 de319cd9af666d39c3a0c48d73696487
77 0.270129 0.498033 0.313730 0.356321 0.0 0.0 11.0 73.416192 92.498606 16.0 c3b5363f7562b2275bfbb26a4b1a5733
78 0.618356 0.170198 0.733218 0.337764 0.0 0.0 10.0 21.826764 27.500000 16.0 afc055a8aaa1b70d3fbdca4d37c72525
79 0.130412 0.567207 0.591310 0.259960 0.0 0.0 12.0 246.941651 739.988845 16.0 aa325154ecf26a33d08d629d4cb36f56
80 0.199951 0.848940 0.410141 0.576346 0.0 0.0 10.0 46.249303 174.614116 16.0 789a86f26ec2d9ff54736af46e197193
81 0.340358 0.248305 0.670087 0.416224 0.0 0.0 14.0 27.500000 36.708096 16.0 39247e599b40ec6e725e4b18b76ae367
82 0.752289 0.090410 0.201556 0.341861 0.0 0.0 13.0 659.255114 1661.218790 16.0 cffec52446c7219f2ae7d3b7117edb89
83 0.576293 0.789588 0.293744 0.032759 0.0 0.0 11.0 55.000000 1567.981744 16.0 4a549c28f9e00457ff0545b7e8d3921a
84 0.769568 0.356891 0.091411 0.754923 0.0 0.0 13.0 8.175799 34.647829 16.0 9990cbb02be6a6b463a301fbaa71e701
85 0.913810 0.883568 0.054602 0.976367 0.0 0.0 8.0 8.175799 14.567618 16.0 7edac48f55453e99cea810f2476107f5
86 0.151999 0.747931 0.715174 0.317170 0.0 0.0 11.0 87.307058 987.766603 16.0 90dfa53550fbafb8fedaef813746fa28
87 0.918004 0.173537 0.798004 0.254347 0.0 0.0 11.0 698.456463 1244.507935 16.0 7c6cef4a941f0bc6fc086b84229a6c1d
88 0.665568 0.079789 0.635287 0.736320 0.0 0.0 12.0 783.990872 1174.659072 16.0 0382148efa0a1c1f38f4d78c3306da6f
89 0.235003 0.781408 0.396755 0.086148 0.0 0.0 11.0 155.563492 220.000000 16.0 cebe0f630bc9b1c4fea6b309338cc08d
90 0.627859 0.631454 0.904592 0.526539 0.0 0.0 12.0 415.304698 1567.981744 16.0 b3d38bbc6d3d1dd119a3abe52f01edeb
91 0.284942 0.740700 0.233742 0.316137 0.0 0.0 12.0 164.813778 246.941651 16.0 3f7fb873357f1c1798e1f509978e920d
92 0.655543 0.048233 0.188027 0.529587 0.0 0.0 12.0 783.990872 830.609395 16.0 6f6a69194f5bda2c6cd48a4d18a2fc14
93 0.480733 0.229740 0.677456 0.286135 0.0 0.0 8.0 9.722718 3951.066410 16.0 511124a644e365647305bbf34b760927
94 0.969128 0.342286 0.983257 0.433680 0.0 0.0 16.0 15.433853 46.249303 16.0 0fc9a020b90652ab17b251760101e133
95 0.197262 0.688633 0.631111 0.902413 0.0 0.0 9.0 622.253967 1108.730524 16.0 c378ea5a33f3320b96e4cbf2f625d424
96 0.761587 0.137257 0.208714 0.792532 0.0 0.0 10.0 783.990872 2637.020455 16.0 6c9590009d9f74a92045ed603ae3e863
97 0.175581 0.694683 0.045141 0.420183 0.0 0.0 12.0 8.175799 12.978272 16.0 912b6bbda1166fdd3c7ed8d16339ad99
98 0.653057 0.940040 0.044491 0.919353 0.0 0.0 10.0 1396.912926 1567.981744 16.0 adeeefd9f6436f15ab8f69ed6bcc610b
99 0.380891 0.864913 0.549023 0.255178 0.0 0.0 9.0 25.956544 51.913087 16.0 e21d1db7ff1b7c5c7fc64b9e57e1d401

100 rows × 11 columns


In [30]:
pmtx


Out[30]:
array([[  1.40566725e-01,   2.96348706e-01,   6.94119437e-01,
          8.70139674e-01,   5.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   2.75000000e+01,   1.23470825e+02,
          1.60000000e+01],
       [  9.76231054e-01,   2.77556017e-01,   6.17027301e-01,
          1.73149196e-01,   5.00000000e+00,   5.00000000e+00,
          1.10000000e+01,   1.63515978e+01,   2.59565436e+01,
          1.60000000e+01],
       [  6.39036413e-01,   7.79432295e-01,   9.54356368e-01,
          2.48040346e-01,   5.00000000e+00,   0.00000000e+00,
          1.40000000e+01,   2.20000000e+02,   9.32327523e+02,
          1.60000000e+01],
       [  8.56777788e-01,   6.15597540e-01,   1.14462311e-01,
          8.65524238e-01,   2.00000000e+00,   2.00000000e+00,
          1.00000000e+01,   4.15304698e+02,   1.97553321e+03,
          1.60000000e+01],
       [  7.17413492e-01,   8.86676141e-01,   4.46664321e-01,
          4.29449566e-01,   0.00000000e+00,   5.00000000e+00,
          1.40000000e+01,   1.03008612e+01,   3.46478289e+01,
          1.60000000e+01],
       [  7.26738693e-01,   4.47663964e-01,   4.55059651e-01,
          5.94066943e-01,   3.00000000e+00,   4.00000000e+00,
          1.10000000e+01,   2.59565436e+01,   2.77182631e+02,
          1.60000000e+01],
       [  3.15652363e-01,   1.50259658e-01,   6.96117114e-01,
          2.45300437e-01,   5.00000000e+00,   1.00000000e+00,
          1.20000000e+01,   5.82704702e+01,   2.20000000e+02,
          1.60000000e+01],
       [  1.20383750e-02,   5.55734758e-02,   4.36362136e-01,
          4.35634401e-01,   2.00000000e+00,   3.00000000e+00,
          1.30000000e+01,   2.33081881e+02,   2.93664768e+02,
          1.60000000e+01],
       [  4.34207031e-01,   6.00596427e-01,   1.44068068e-01,
          8.45757042e-01,   0.00000000e+00,   2.00000000e+00,
          1.10000000e+01,   6.17354127e+01,   7.34161920e+01,
          1.60000000e+01],
       [  3.14422876e-01,   7.20785614e-01,   8.98456932e-01,
          5.01920043e-01,   0.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   4.62493028e+01,   8.73070579e+01,
          1.60000000e+01],
       [  1.49212671e-01,   8.03590202e-01,   5.06268250e-01,
          2.21940402e-01,   3.00000000e+00,   5.00000000e+00,
          1.40000000e+01,   1.45676175e+01,   2.75000000e+01,
          1.60000000e+01],
       [  9.41576313e-01,   7.93607339e-01,   8.84416819e-01,
          5.07369355e-01,   5.00000000e+00,   4.00000000e+00,
          1.30000000e+01,   9.24986057e+01,   5.87329536e+02,
          1.60000000e+01],
       [  8.47061557e-01,   9.48209825e-01,   1.66209055e-01,
          4.83142358e-01,   2.00000000e+00,   3.00000000e+00,
          9.00000000e+00,   2.33081881e+02,   3.91995436e+02,
          1.60000000e+01],
       [  7.74482971e-01,   5.15726527e-01,   1.91346006e-01,
          6.72673587e-02,   3.00000000e+00,   1.00000000e+00,
          1.30000000e+01,   2.44997147e+01,   8.24068892e+01,
          1.60000000e+01],
       [  3.87323079e-01,   8.28987787e-01,   3.05138847e-01,
          4.62203530e-01,   1.00000000e+00,   2.00000000e+00,
          1.30000000e+01,   4.12034446e+01,   3.11126984e+02,
          1.60000000e+01],
       [  2.64969927e-01,   1.46886565e-01,   8.02804672e-01,
          5.99799814e-01,   5.00000000e+00,   3.00000000e+00,
          1.40000000e+01,   1.84997211e+02,   5.54365262e+02,
          1.60000000e+01],
       [  3.98865707e-01,   7.72134750e-01,   2.24418877e-01,
          4.36500907e-01,   4.00000000e+00,   3.00000000e+00,
          1.20000000e+01,   2.20000000e+02,   1.56798174e+03,
          1.60000000e+01],
       [  3.74542711e-01,   1.51518953e-01,   1.04026171e-01,
          3.85049362e-01,   2.00000000e+00,   1.00000000e+00,
          1.50000000e+01,   3.11126984e+02,   1.56798174e+03,
          1.60000000e+01],
       [  4.06214381e-01,   5.23283246e-01,   6.37029038e-01,
          5.15607815e-01,   4.00000000e+00,   0.00000000e+00,
          1.20000000e+01,   1.03826174e+02,   1.23470825e+02,
          1.60000000e+01],
       [  2.53474277e-02,   7.48021172e-01,   5.71764387e-01,
          8.18624821e-01,   3.00000000e+00,   1.00000000e+00,
          1.00000000e+01,   2.33081881e+02,   3.69994423e+02,
          1.60000000e+01],
       [  6.30944762e-01,   3.41775929e-01,   9.07954901e-01,
          8.46462698e-01,   1.00000000e+00,   1.00000000e+00,
          1.30000000e+01,   5.54365262e+02,   7.83990872e+02,
          1.60000000e+01],
       [  5.49380016e-01,   5.49365418e-01,   5.14414410e-01,
          6.79679725e-02,   4.00000000e+00,   3.00000000e+00,
          1.10000000e+01,   2.91352351e+01,   4.66163762e+02,
          1.60000000e+01],
       [  6.24506891e-01,   9.70799762e-01,   1.15832663e-01,
          8.46796122e-02,   1.00000000e+00,   4.00000000e+00,
          9.00000000e+00,   1.03008612e+01,   2.18267645e+01,
          1.60000000e+01],
       [  6.19146520e-01,   7.02963089e-01,   7.04623715e-01,
          8.46076739e-01,   1.00000000e+00,   2.00000000e+00,
          1.20000000e+01,   3.91995436e+02,   4.15304698e+02,
          1.60000000e+01],
       [  4.41448269e-01,   9.29196994e-01,   9.23300195e-01,
          3.62458668e-01,   4.00000000e+00,   0.00000000e+00,
          1.20000000e+01,   9.17702400e+00,   3.67080960e+01,
          1.60000000e+01],
       [  4.92206884e-02,   9.61916363e-02,   5.06798484e-01,
          9.49034410e-01,   5.00000000e+00,   1.00000000e+00,
          1.30000000e+01,   1.84997211e+02,   2.46941651e+02,
          1.60000000e+01],
       [  8.68059877e-01,   1.07454922e-01,   3.11292816e-02,
          2.27593498e-01,   2.00000000e+00,   0.00000000e+00,
          1.30000000e+01,   4.66163762e+02,   7.39988845e+02,
          1.60000000e+01],
       [  4.38835281e-01,   6.68790457e-01,   2.21934772e-01,
          1.99449462e-01,   5.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   3.88908730e+01,   6.17354127e+01,
          1.60000000e+01],
       [  5.44935871e-01,   1.17482472e-01,   4.35653652e-01,
          9.00235117e-01,   2.00000000e+00,   0.00000000e+00,
          1.00000000e+01,   3.08677063e+01,   2.79382585e+03,
          1.60000000e+01],
       [  3.95026275e-01,   6.83074667e-01,   1.27903847e-01,
          6.95616148e-01,   3.00000000e+00,   1.00000000e+00,
          1.10000000e+01,   6.17354127e+01,   3.69994423e+02,
          1.60000000e+01],
       [  3.43855395e-01,   7.99278448e-01,   1.31273567e-01,
          2.13649375e-01,   4.00000000e+00,   4.00000000e+00,
          1.20000000e+01,   3.91995436e+02,   7.39988845e+02,
          1.60000000e+01],
       [  6.60814016e-01,   4.66262544e-01,   8.11170039e-01,
          8.29434882e-01,   0.00000000e+00,   2.00000000e+00,
          1.40000000e+01,   2.61625565e+02,   3.11126984e+02,
          1.60000000e+01],
       [  9.76757669e-01,   4.37239896e-01,   3.33418054e-01,
          7.90673838e-01,   0.00000000e+00,   2.00000000e+00,
          9.00000000e+00,   1.15623257e+01,   2.18267645e+01,
          1.60000000e+01],
       [  3.46096712e-01,   6.65650199e-03,   8.66110898e-02,
          9.70710505e-01,   3.00000000e+00,   3.00000000e+00,
          1.30000000e+01,   1.74614116e+02,   2.46941651e+02,
          1.60000000e+01],
       [  9.01814461e-02,   2.05660623e-01,   5.37871528e-01,
          7.43020144e-02,   5.00000000e+00,   3.00000000e+00,
          1.40000000e+01,   5.19130872e+01,   1.16540940e+02,
          1.60000000e+01],
       [  6.96076211e-01,   4.14700477e-01,   2.43478701e-01,
          5.35827853e-01,   5.00000000e+00,   1.00000000e+00,
          1.20000000e+01,   2.44997147e+01,   1.30812783e+02,
          1.60000000e+01],
       [  4.97783418e-01,   1.15200605e-01,   6.38931637e-01,
          4.46775202e-01,   5.00000000e+00,   5.00000000e+00,
          1.00000000e+01,   1.83540480e+01,   3.67080960e+01,
          1.60000000e+01],
       [  9.16018992e-01,   3.72392766e-01,   4.64937396e-01,
          3.73454475e-01,   1.00000000e+00,   1.00000000e+00,
          1.10000000e+01,   1.66121879e+03,   2.21746105e+03,
          1.60000000e+01],
       [  3.59384110e-01,   2.31281577e-01,   9.80787092e-01,
          6.06335052e-01,   3.00000000e+00,   2.00000000e+00,
          1.40000000e+01,   1.74614116e+02,   5.54365262e+02,
          1.60000000e+01],
       [  7.01058769e-01,   8.78345353e-02,   5.30614298e-01,
          8.06027846e-01,   3.00000000e+00,   0.00000000e+00,
          1.00000000e+01,   2.77182631e+02,   4.93883301e+02,
          1.60000000e+01],
       [  8.46154512e-01,   1.87416702e-01,   2.22742871e-01,
          2.55321866e-01,   2.00000000e+00,   2.00000000e+00,
          1.20000000e+01,   7.77817459e+01,   1.23470825e+02,
          1.60000000e+01],
       [  2.44638450e-01,   4.89615141e-03,   1.44001771e-01,
          3.93863621e-01,   5.00000000e+00,   0.00000000e+00,
          1.20000000e+01,   4.93883301e+02,   5.87329536e+02,
          1.60000000e+01],
       [  2.64003613e-01,   9.77735276e-01,   7.19114612e-01,
          9.01769181e-01,   4.00000000e+00,   2.00000000e+00,
          1.20000000e+01,   1.22498574e+01,   6.92956577e+01,
          1.60000000e+01],
       [  9.76232131e-01,   4.73980819e-01,   8.56676586e-01,
          1.85855418e-02,   4.00000000e+00,   3.00000000e+00,
          1.10000000e+01,   3.08677063e+01,   6.22253967e+02,
          1.60000000e+01],
       [  6.96363877e-01,   9.01892568e-01,   8.74152129e-02,
          1.40171550e-01,   1.00000000e+00,   3.00000000e+00,
          1.30000000e+01,   8.30609395e+02,   1.39691293e+03,
          1.60000000e+01],
       [  2.44547789e-02,   6.95094086e-01,   6.19703209e-01,
          4.80139384e-01,   1.00000000e+00,   3.00000000e+00,
          1.40000000e+01,   1.83540480e+01,   5.19130872e+01,
          1.60000000e+01],
       [  4.99682276e-01,   8.54642128e-02,   1.16964019e-01,
          8.82417334e-01,   3.00000000e+00,   5.00000000e+00,
          9.00000000e+00,   1.45676175e+01,   3.88908730e+01,
          1.60000000e+01],
       [  3.32999431e-01,   7.58517863e-01,   9.57923895e-01,
          8.58893091e-01,   4.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   2.77182631e+02,   5.23251131e+02,
          1.60000000e+01],
       [  1.19481319e-01,   5.16393929e-01,   8.57334431e-03,
          6.21834337e-01,   5.00000000e+00,   4.00000000e+00,
          1.00000000e+01,   1.47997769e+03,   2.63702046e+03,
          1.60000000e+01],
       [  7.87179804e-01,   9.29303701e-01,   5.02257370e-01,
          9.89073623e-01,   2.00000000e+00,   4.00000000e+00,
          1.30000000e+01,   8.80000000e+02,   1.31851023e+03,
          1.60000000e+01],
       [  2.71883593e-01,   3.03523995e-01,   7.76082888e-01,
          2.31191883e-01,   4.00000000e+00,   1.00000000e+00,
          1.10000000e+01,   6.98456463e+02,   1.17465907e+03,
          1.60000000e+01],
       [  3.25999117e-01,   3.93316786e-01,   5.96222219e-01,
          1.59517751e-01,   0.00000000e+00,   3.00000000e+00,
          9.00000000e+00,   1.09133822e+01,   1.64813778e+02,
          1.60000000e+01],
       [  1.25434927e-01,   9.15497073e-01,   9.36152996e-01,
          9.46849897e-01,   1.00000000e+00,   4.00000000e+00,
          1.10000000e+01,   5.50000000e+01,   1.03826174e+02,
          1.60000000e+01],
       [  2.20754135e-01,   2.08976731e-01,   1.98145901e-01,
          8.55898171e-01,   4.00000000e+00,   4.00000000e+00,
          1.20000000e+01,   4.93883301e+02,   7.39988845e+02,
          1.60000000e+01],
       [  9.17049535e-01,   6.26543410e-03,   2.08145487e-02,
          5.81651906e-01,   3.00000000e+00,   4.00000000e+00,
          1.10000000e+01,   3.91995436e+02,   4.93883301e+02,
          1.60000000e+01],
       [  3.44972430e-01,   6.08715328e-01,   9.36192542e-02,
          9.67605131e-01,   5.00000000e+00,   2.00000000e+00,
          1.00000000e+01,   2.61625565e+02,   2.93664768e+02,
          1.60000000e+01],
       [  2.17571318e-01,   3.97113944e-01,   9.00572365e-01,
          6.46500433e-01,   5.00000000e+00,   0.00000000e+00,
          1.40000000e+01,   9.72271824e+00,   1.37500000e+01,
          1.60000000e+01],
       [  6.09425226e-01,   9.53499121e-01,   3.67830864e-01,
          2.95025276e-01,   1.00000000e+00,   4.00000000e+00,
          1.10000000e+01,   1.09133822e+01,   3.72931009e+03,
          1.60000000e+01],
       [  6.03153526e-01,   6.75552074e-01,   2.27855896e-01,
          2.19524198e-01,   3.00000000e+00,   2.00000000e+00,
          1.20000000e+01,   1.94454365e+01,   4.89994295e+01,
          1.60000000e+01],
       [  4.44281858e-01,   5.36325911e-01,   7.90351741e-01,
          7.57456099e-01,   0.00000000e+00,   3.00000000e+00,
          1.30000000e+01,   5.50000000e+01,   1.64813778e+02,
          1.60000000e+01],
       [  6.53895144e-01,   8.87003260e-01,   9.60499685e-03,
          9.62404894e-01,   5.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   9.72271824e+00,   1.83540480e+01,
          1.60000000e+01],
       [  9.17862960e-01,   7.84819867e-01,   6.00791650e-01,
          4.39622459e-01,   0.00000000e+00,   2.00000000e+00,
          1.00000000e+01,   4.40000000e+02,   6.22253967e+02,
          1.60000000e+01],
       [  4.59416026e-01,   9.64323383e-01,   7.38905189e-03,
          3.65515440e-01,   4.00000000e+00,   0.00000000e+00,
          1.10000000e+01,   1.54338532e+01,   4.36535289e+01,
          1.60000000e+01],
       [  2.18429455e-01,   8.03875937e-02,   6.71319582e-01,
          7.06118679e-02,   0.00000000e+00,   2.00000000e+00,
          1.30000000e+01,   6.59255114e+02,   1.24450793e+03,
          1.60000000e+01],
       [  8.88572972e-01,   4.25046821e-01,   4.71270212e-01,
          3.01855318e-01,   0.00000000e+00,   4.00000000e+00,
          1.20000000e+01,   1.95997718e+02,   4.66163762e+02,
          1.60000000e+01],
       [  7.06000732e-02,   5.00510665e-01,   2.49573626e-02,
          2.57327761e-01,   1.00000000e+00,   1.00000000e+00,
          1.10000000e+01,   3.11126984e+02,   1.04650226e+03,
          1.60000000e+01],
       [  5.59480495e-01,   3.51992463e-01,   5.07058652e-01,
          5.04548853e-01,   0.00000000e+00,   0.00000000e+00,
          9.00000000e+00,   1.17465907e+03,   1.86465505e+03,
          1.60000000e+01],
       [  3.04304972e-01,   7.25535293e-01,   7.81526949e-03,
          9.95179416e-01,   1.00000000e+00,   4.00000000e+00,
          1.10000000e+01,   1.09133822e+01,   1.03826174e+02,
          1.60000000e+01],
       [  3.89979482e-01,   3.04110776e-01,   5.48185920e-01,
          7.46558343e-01,   1.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   2.59565436e+01,   4.12034446e+01,
          1.60000000e+01],
       [  6.03574550e-01,   7.71480041e-01,   6.40922688e-01,
          5.57669701e-01,   3.00000000e+00,   0.00000000e+00,
          1.00000000e+01,   2.18267645e+01,   3.46478289e+01,
          1.60000000e+01],
       [  6.33824101e-01,   1.00791411e-01,   8.86926243e-01,
          5.69302888e-01,   3.00000000e+00,   3.00000000e+00,
          1.00000000e+01,   1.95997718e+02,   2.07652349e+02,
          1.60000000e+01],
       [  4.83270844e-01,   4.31958188e-02,   8.89111208e-01,
          3.03748410e-02,   5.00000000e+00,   1.00000000e+00,
          1.10000000e+01,   6.17354127e+01,   8.73070579e+01,
          1.60000000e+01],
       [  4.87945587e-01,   6.90624501e-01,   4.78157023e-01,
          4.23797250e-02,   1.00000000e+00,   4.00000000e+00,
          8.00000000e+00,   4.36535289e+01,   1.84997211e+02,
          1.60000000e+01],
       [  4.17061098e-02,   8.54476414e-01,   2.04662729e-01,
          2.41624398e-01,   1.00000000e+00,   3.00000000e+00,
          9.00000000e+00,   1.10873052e+03,   2.09300452e+03,
          1.60000000e+01],
       [  5.93181370e-01,   2.04257731e-01,   6.25243785e-01,
          1.02961477e-01,   1.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   3.11126984e+02,   2.21746105e+03,
          1.60000000e+01],
       [  7.75826478e-01,   2.84495709e-01,   8.59169508e-01,
          6.31274988e-01,   2.00000000e+00,   2.00000000e+00,
          1.10000000e+01,   9.17702400e+00,   1.09133822e+01,
          1.60000000e+01],
       [  1.08605262e-01,   6.09662022e-01,   5.96985380e-01,
          3.49630688e-01,   2.00000000e+00,   4.00000000e+00,
          1.20000000e+01,   1.30812783e+02,   2.46941651e+02,
          1.60000000e+01],
       [  1.20932073e-01,   6.81907879e-01,   9.21699988e-01,
          1.67986030e-01,   3.00000000e+00,   0.00000000e+00,
          1.20000000e+01,   8.17579892e+00,   4.18600904e+03,
          1.60000000e+01],
       [  9.43480882e-01,   1.72716304e-01,   7.31615737e-01,
          2.35318539e-01,   5.00000000e+00,   3.00000000e+00,
          8.00000000e+00,   1.64813778e+02,   3.29627557e+02,
          1.60000000e+01],
       [  3.36802048e-01,   8.93346266e-01,   5.56808351e-01,
          4.23929893e-01,   4.00000000e+00,   0.00000000e+00,
          8.00000000e+00,   3.88908730e+01,   3.95106641e+03,
          1.60000000e+01],
       [  3.32561690e-01,   4.32786774e-01,   1.98115883e-01,
          4.70694013e-03,   2.00000000e+00,   4.00000000e+00,
          1.30000000e+01,   2.20000000e+02,   3.95106641e+03,
          1.60000000e+01],
       [  7.74137628e-01,   3.24171250e-01,   9.54343651e-02,
          6.80617300e-01,   5.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   1.10873052e+03,   3.95106641e+03,
          1.60000000e+01],
       [  2.00390003e-01,   4.80073455e-01,   2.03514730e-01,
          8.01010403e-01,   1.00000000e+00,   0.00000000e+00,
          1.40000000e+01,   4.66163762e+02,   6.22253967e+02,
          1.60000000e+01],
       [  3.88211952e-01,   7.23324070e-01,   9.08966653e-01,
          1.15439206e-01,   5.00000000e+00,   2.00000000e+00,
          1.10000000e+01,   6.54063913e+01,   8.73070579e+01,
          1.60000000e+01],
       [  2.05755206e-02,   5.84655459e-01,   6.36086635e-01,
          2.77855111e-01,   2.00000000e+00,   3.00000000e+00,
          1.10000000e+01,   1.95997718e+02,   2.93664768e+02,
          1.60000000e+01],
       [  4.92622980e-01,   9.89929425e-01,   9.76492480e-01,
          8.92141956e-03,   2.00000000e+00,   1.00000000e+00,
          1.40000000e+01,   5.87329536e+02,   1.86465505e+03,
          1.60000000e+01],
       [  7.59947779e-01,   5.97140933e-02,   3.37852753e-02,
          8.30424594e-01,   4.00000000e+00,   0.00000000e+00,
          1.20000000e+01,   9.79988590e+01,   1.30812783e+02,
          1.60000000e+01],
       [  2.33052433e-01,   3.95877031e-01,   7.80625965e-01,
          6.12112506e-01,   0.00000000e+00,   4.00000000e+00,
          1.20000000e+01,   3.88908730e+01,   1.23470825e+02,
          1.60000000e+01],
       [  6.25775589e-01,   1.73320709e-01,   7.32627992e-01,
          2.32759446e-01,   0.00000000e+00,   5.00000000e+00,
          1.30000000e+01,   3.29627557e+02,   7.83990872e+02,
          1.60000000e+01],
       [  6.13349483e-01,   4.70304177e-01,   2.07820805e-01,
          1.58491173e-01,   2.00000000e+00,   1.00000000e+00,
          1.40000000e+01,   2.07652349e+02,   2.46941651e+02,
          1.60000000e+01],
       [  5.88138769e-01,   9.02429914e-01,   6.52229789e-01,
          5.62310140e-01,   0.00000000e+00,   5.00000000e+00,
          1.10000000e+01,   1.66121879e+03,   3.95106641e+03,
          1.60000000e+01],
       [  2.32791422e-01,   2.67940554e-01,   8.00947476e-01,
          2.51281146e-01,   4.00000000e+00,   3.00000000e+00,
          1.30000000e+01,   3.88908730e+01,   7.77817459e+01,
          1.60000000e+01],
       [  6.80249933e-02,   6.42926405e-02,   8.62884989e-02,
          9.11257901e-01,   0.00000000e+00,   2.00000000e+00,
          1.10000000e+01,   9.79988590e+01,   1.86465505e+03,
          1.60000000e+01],
       [  4.63363314e-01,   7.89818197e-01,   6.07832977e-01,
          1.10045903e-01,   3.00000000e+00,   3.00000000e+00,
          1.20000000e+01,   8.66195722e+00,   1.37500000e+01,
          1.60000000e+01],
       [  4.40565527e-02,   2.91823856e-01,   9.46863941e-02,
          8.32175186e-01,   4.00000000e+00,   1.00000000e+00,
          1.10000000e+01,   1.17465907e+03,   1.86465505e+03,
          1.60000000e+01],
       [  4.59862069e-01,   3.49460539e-01,   9.07124286e-01,
          8.39087962e-01,   5.00000000e+00,   4.00000000e+00,
          1.30000000e+01,   8.17579892e+00,   6.54063913e+01,
          1.60000000e+01],
       [  5.92218547e-01,   4.65846456e-01,   9.50627801e-01,
          8.14859360e-01,   5.00000000e+00,   5.00000000e+00,
          1.20000000e+01,   1.63515978e+01,   8.24068892e+01,
          1.60000000e+01],
       [  3.01785372e-01,   9.53624952e-01,   6.82601271e-01,
          1.26688128e-01,   2.00000000e+00,   5.00000000e+00,
          1.10000000e+01,   6.17354127e+01,   5.23251131e+02,
          1.60000000e+01],
       [  3.87658424e-01,   4.06595450e-01,   7.97436325e-01,
          9.41025691e-01,   0.00000000e+00,   0.00000000e+00,
          9.00000000e+00,   1.16540940e+02,   2.20000000e+02,
          1.60000000e+01],
       [  8.17272867e-01,   7.40968764e-01,   8.04849419e-01,
          6.91434430e-01,   3.00000000e+00,   2.00000000e+00,
          1.00000000e+01,   3.46478289e+01,   1.23470825e+02,
          1.60000000e+01]])

Generation/rendering timing

~$0.189$ seconds per example/.aiff.

18.9s for 100


In [8]:
%time

for i, row in df.iterrows():
    
    session = nonrealtimetools.Session()
    
    builder = gk.generator.gendy1.make_builder(row)
    
    out = gk.generator.gendy1.build_out(builder)
    
    synthdef = builder.build()
    
    with session.at(0):
        synth_a = session.add_synth(duration=10, synthdef=synthdef)
    
    gk.util.render_session(session, this_dir, row["hash"])


1 loop, best of 3: 18.9 s per loop

Feature extraction timing

~$0.88$ seconds per example/.aiff.

1m 28s for 100


In [10]:
%timeit

for i, row in df.iterrows():
    
    y, sr = librosa.load(os.path.join(this_dir, "aif_files", row["hash"] + ".aiff"))
    
    _y_normed = librosa.util.normalize(y)
    _mfcc = librosa.feature.mfcc(y=_y_normed, sr=sr, n_mfcc=13)
    _cent = np.mean(librosa.feature.spectral_centroid(y=_y_normed, sr=sr))
    
    _mfcc_mean = gk.feature_extraction.get_stats(_mfcc)["mean"]
    
    X_row = np.append(_mfcc_mean, _cent)
    
    if i==0:
        X_mtx = X_row
    else:
        X_mtx = np.vstack((X_mtx, X_row))


1 loop, best of 3: 1min 28s per loop

Thought: For feature extraction, it would probably be faster to extract all time domain vectors $y$ into a NumPy array and perform the necessary LibROSA operations across the rows of the vector, possibly leveraging under-the-hood efficiencies.

"1min 43s per loop" below


In [13]:
for i, row in df.iterrows():
    
    session = nonrealtimetools.Session()
    
    builder = gk.generator.gendy1.make_builder(row)
    
    out = gk.generator.gendy1.build_out(builder)
    
    synthdef = builder.build()
    
    with session.at(0):
        synth_a = session.add_synth(duration=10, synthdef=synthdef)
    
    gk.util.render_session(session, this_dir, row["hash"])
    
    y, sr = librosa.load(os.path.join(this_dir, "aif_files", row["hash"] + ".aiff"))
    
    _y_normed = librosa.util.normalize(y)
    _mfcc = librosa.feature.mfcc(y=_y_normed, sr=sr, n_mfcc=13)
    _cent = np.mean(librosa.feature.spectral_centroid(y=_y_normed, sr=sr))
    
    _mfcc_mean = gk.feature_extraction.get_stats(_mfcc)["mean"]
    
    X_row = np.append(_mfcc_mean, _cent)
    
    if i==0:
        X_mtx = X_row
    else:
        X_mtx = np.vstack((X_mtx, X_row))


1 loop, best of 3: 1min 43s per loop

In [16]:
X_mtx.shape


Out[16]:
(100, 14)

In [20]:
def col_rename_4_mfcc(c):
    if (c < 13):
        return "mfcc_mean_{}".format(c)
    else:
        return "spectral_centroid"

In [21]:
pd.DataFrame(X_mtx).rename_axis(lambda c: col_rename_4_mfcc(c), axis=1)


Out[21]:
mfcc_mean_0 mfcc_mean_1 mfcc_mean_2 mfcc_mean_3 mfcc_mean_4 mfcc_mean_5 mfcc_mean_6 mfcc_mean_7 mfcc_mean_8 mfcc_mean_9 mfcc_mean_10 mfcc_mean_11 mfcc_mean_12 spectral_centroid
0 -130.944498 212.246248 22.733654 40.690030 12.067444 11.575786 -2.923093 1.963526 1.012338 5.041066 -1.778145 -0.059208 -0.053824 439.129383
1 -399.895787 110.209896 74.756361 45.275353 30.022552 24.211951 21.498928 18.683785 15.939682 14.143797 13.070332 12.103905 11.177688 28.382782
2 91.596323 84.458611 -51.472184 22.995390 -13.212321 10.045572 -8.217880 5.379077 -5.687071 3.532893 -3.146553 7.163779 4.395984 2359.783056
3 108.614834 41.703153 -43.736769 12.669656 -12.150096 11.946690 5.544302 22.679438 6.981179 5.568756 -8.453263 5.247114 4.105417 3321.156070
4 -257.498754 196.193063 51.860213 33.223307 34.137235 20.907093 19.182403 15.203466 11.925751 11.138111 9.420953 8.718725 7.627488 185.699671
5 -193.675721 200.459160 9.867697 17.697053 -1.148573 13.137136 8.874220 2.058959 2.494816 7.649791 0.977434 3.701533 4.431168 281.375797
6 -99.255339 187.928813 -2.400399 14.618994 -13.758809 3.472774 0.320724 4.100003 -6.144052 6.141625 0.164230 1.029655 -0.117211 603.629813
7 -65.096548 119.754086 -35.833374 -13.031844 -13.445218 21.014780 -18.855273 -9.250680 12.133204 -11.209625 -19.034837 25.895658 -14.952459 1365.673027
8 -150.207907 199.412785 22.935211 46.877748 22.706417 26.449756 13.847491 7.392376 -9.558257 -17.755563 -19.497822 -4.273309 9.658858 432.687709
9 -149.157050 210.391977 22.183814 42.031267 18.932379 22.919038 11.152427 9.410636 -0.429824 -3.695098 -8.920190 -6.296199 -3.881610 399.406245
10 -340.201357 165.930251 70.565247 30.761530 31.261373 26.647257 18.388280 16.187891 14.585171 12.103353 11.079403 10.246418 9.120839 71.720036
11 6.112265 148.653894 -38.904657 15.262946 0.279633 1.558111 1.101243 3.030016 -1.815661 5.338824 -2.578960 5.812729 -2.170402 1217.617461
12 -6.867327 175.536196 -8.756827 -0.813062 -25.938709 13.655398 8.412102 -5.728035 -15.097791 17.403257 -3.629439 -7.787881 3.420220 1074.711978
13 -273.189933 196.842472 44.006941 32.859688 30.937577 15.734702 11.308977 1.564761 -1.615650 1.674830 5.060813 5.387484 1.083436 138.239326
14 -1.179280 186.504575 -13.168122 7.702715 -6.959950 12.097020 -9.296268 0.670239 -1.656644 -1.433505 -4.144156 2.415664 -5.776426 966.652696
15 4.551287 136.437145 -51.754995 -7.027945 -4.988497 10.530632 -12.529925 6.626493 -3.929798 1.137125 -2.796705 3.836182 -2.504655 1328.003713
16 85.181769 119.017278 -55.916597 12.750346 -6.694964 1.678898 -2.779380 0.952695 -2.999644 1.798908 -4.016067 2.047174 -4.190821 1928.751797
17 90.191236 14.656168 -47.594906 5.551048 -17.733038 0.384498 -8.836457 11.887268 13.141246 27.478729 11.806024 5.389236 -10.406571 3692.915963
18 -83.394020 187.360281 20.232888 38.943839 -4.743480 -10.343549 -22.295417 6.048916 14.443237 7.609337 -19.994906 -6.595278 8.422725 716.223272
19 -73.318825 171.378497 -22.353387 -1.984178 -8.114975 23.694265 -4.649516 -0.134339 8.430598 6.442983 -3.987355 12.046813 -1.915677 777.648864
20 18.196390 36.265611 -57.300253 34.892149 -22.674767 7.679253 -10.483903 -2.425615 -0.539621 13.252110 31.706520 32.270856 15.487768 2876.427698
21 -202.216136 209.230301 34.720954 38.528029 26.253699 19.229712 17.196148 11.705229 11.479854 8.205794 6.759941 3.380408 0.222500 282.359030
22 -313.176685 155.511469 73.811454 32.795860 29.677764 27.192494 19.588297 15.911409 14.503815 12.399183 10.834480 9.971129 9.036276 108.303910
23 -9.615172 129.716910 -52.212949 -1.136605 13.376242 -4.356900 -18.290028 29.557186 -34.970057 26.575242 -15.458440 0.662723 -0.393250 1729.641814
24 -259.514615 185.040826 59.646164 30.595194 34.250743 22.800958 18.093277 16.527335 12.549139 11.291874 10.078129 8.796024 8.328326 172.221578
25 -35.086315 136.811693 -32.048640 -8.674571 -17.973700 17.048128 -7.139772 -12.386438 -0.602572 7.252857 -16.222938 8.550010 -0.207872 1251.268593
26 2.140036 22.958742 -61.243439 31.232914 -18.617048 -1.252628 -2.374840 -8.556711 -5.999625 -3.039336 15.848294 32.565206 34.893593 2883.351422
27 -180.303722 210.031939 25.614925 42.866791 21.707217 23.702508 15.505624 14.207790 8.508061 4.411809 -1.929581 -6.125128 -8.086553 320.154860
28 109.403837 69.055065 -16.386115 14.482498 -7.015294 7.962498 -3.539384 7.110676 -3.415325 4.134727 -3.697713 4.036978 -3.090759 3040.898005
29 -105.319927 188.452663 -9.875766 9.693579 -1.902148 16.048841 -4.273755 3.942981 3.458656 2.168673 1.654555 5.832600 0.048751 563.021922
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
70 -307.813300 171.501835 43.073483 1.186148 -17.059571 -4.280283 26.887092 15.969707 -15.146229 -1.326479 25.602239 4.725988 -7.229602 102.412996
71 -256.262220 177.667570 35.279755 41.074118 32.646052 22.869990 7.365998 -2.746482 -11.832048 -6.774149 4.203519 12.727086 8.279531 194.582872
72 -123.638507 196.101218 16.091192 37.703966 8.586197 6.572689 -8.640426 -0.573421 2.027123 6.996951 -3.244056 -2.842037 -1.415446 547.827122
73 91.201402 61.890904 -50.296706 34.611358 -19.843078 34.275911 5.463908 26.850593 -12.961399 -1.970077 -4.427944 23.936790 2.149188 3021.571060
74 61.521574 75.549878 -70.206479 4.072889 -12.268407 -0.804737 -8.762767 1.657496 -10.471751 -2.039512 -8.164378 1.220309 -0.395788 2299.984637
75 -348.854984 131.896991 77.298459 38.691859 27.370018 25.832986 21.517795 16.635897 14.360958 13.147170 11.757687 10.624068 9.748905 69.675077
76 -3.951955 175.926868 -16.887992 2.177106 -21.221609 8.061110 1.376236 -0.831991 -8.723344 6.918125 -6.161587 2.025728 -1.955819 1068.693765
77 6.312709 64.119320 0.662811 20.428846 2.098026 9.363664 -1.253574 7.691288 0.152815 6.425648 -0.281768 6.772991 0.180943 2403.080959
78 -265.967826 189.684948 40.921330 28.918336 3.856197 -16.878804 -8.641422 11.581525 22.577539 1.036239 -14.762041 3.065197 17.231147 160.792166
79 114.066912 65.705402 -13.982049 15.738120 -2.697014 12.161346 -0.194070 7.555816 -1.360006 6.779690 -1.487610 5.401036 -1.348300 3137.934756
80 52.080801 -2.029646 -9.214531 16.661814 14.812910 28.503113 7.405197 0.958969 -1.424717 17.050482 5.375132 2.593108 0.867433 4607.674790
81 0.129542 1.296577 1.134177 29.180047 16.657870 13.876821 -5.846684 14.828635 13.349497 2.471706 -3.025962 17.216665 0.068455 3728.938367
82 50.185707 69.750195 -62.128786 31.666168 -12.838869 -0.678508 3.423202 -9.808444 2.928664 -8.830149 4.075028 7.549014 20.555221 2545.937078
83 -141.369083 200.989763 22.828728 47.725317 23.799062 24.674824 5.827063 -2.230552 -16.662661 -13.424836 -4.548865 10.181220 9.344715 427.742851
84 -33.911887 177.238500 1.460917 -1.179384 -29.288186 9.006010 16.565548 -4.567549 -23.957549 18.389237 7.319709 -18.177522 3.227128 1033.168160
85 95.620136 24.162909 -21.330590 12.638309 -5.323904 19.195329 12.701693 19.753890 -3.804634 -5.664643 -4.645723 17.033040 6.003195 4041.866233
86 -78.124385 180.139992 1.803036 26.684432 -10.907147 -10.352879 -19.287853 2.790099 3.456098 -2.008889 -21.425404 -8.388509 0.576494 809.815892
87 -102.630029 208.396622 18.649455 38.064037 7.297848 6.976391 -8.479380 -0.673444 -0.535007 4.607480 -4.505434 -2.000420 -1.579127 536.744984
88 36.237315 81.456456 -68.728021 6.888781 0.927624 -3.934688 -7.373528 6.245210 -12.398505 7.953072 -8.427711 1.291764 -8.398082 2154.611718
89 -13.889859 152.856319 -21.261154 -13.211758 -10.707592 27.258129 -17.125446 -8.789949 14.124429 -4.738955 -14.482688 19.706406 -16.619446 1301.327022
90 83.447113 1.812704 4.520221 28.265909 15.011482 6.466598 -8.997236 16.023643 7.023527 -6.226134 -0.380711 14.075010 -10.386671 4891.810972
91 -185.604592 206.337093 25.511371 45.913118 24.236532 25.398985 16.804346 16.984858 12.793724 9.822169 1.918410 -7.251096 -15.291040 334.386811
92 106.618408 68.227289 -35.364793 11.350113 -13.695992 3.597132 -9.584854 3.928110 -4.155313 6.291189 -1.728305 5.843339 -1.471005 2930.730071
93 -413.286972 103.664304 74.358332 46.970740 31.255063 25.115325 22.120139 18.952836 15.974466 13.969859 12.764401 11.691259 10.617216 27.406534
94 45.976830 -14.512710 -13.656387 18.141022 8.774175 36.462065 11.854833 0.298979 -15.362854 20.456249 22.244089 1.058561 -17.340131 4586.614343
95 -219.990763 204.620151 41.814556 36.895815 30.497998 20.563205 18.753211 11.094620 6.271293 1.090289 -0.426076 1.362617 3.783278 212.787669
96 -224.056647 211.048163 36.244777 40.204388 27.123646 20.813520 16.674609 10.407743 7.226611 3.281310 2.596085 1.825429 1.610101 212.826591
97 -61.565860 204.165510 8.677969 26.727983 -1.837981 8.164580 -4.215543 1.924936 -4.988670 2.121297 -3.525907 1.950059 -2.732152 660.369735
98 -50.747979 192.216719 1.366500 20.313345 -14.808932 -7.260769 -10.273262 7.347047 -2.840807 -3.044787 -5.123745 3.984245 -4.706193 796.513395
99 -236.292400 206.459818 34.469195 37.975486 24.656601 13.375484 6.655611 -1.206207 1.702022 4.473805 5.835302 1.604360 -0.253468 195.427304

100 rows × 14 columns


In [66]:
pmtx.shape


Out[66]:
(100, 10)

In [67]:
X_mtx.shape


Out[67]:
(100, 14)

In [68]:
X_mtx[0]


Out[68]:
array([ -1.30944498e+02,   2.12246248e+02,   2.27336540e+01,
         4.06900302e+01,   1.20674442e+01,   1.15757863e+01,
        -2.92309292e+00,   1.96352599e+00,   1.01233809e+00,
         5.04106581e+00,  -1.77814489e+00,  -5.92080878e-02,
        -5.38241320e-02,   4.39129383e+02])

In [31]:
X_train, X_test, y_train, y_test = sk.model_selection.train_test_split(
    X_mtx, pmtx, test_size=0.4, random_state=1)

In [38]:
# Create linear regression objectc
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(X_train, y_train)

# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
      % np.mean((regr.predict(X_test) - y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(X_test, y_test))


Coefficients: 
 [[ -7.64326344e-04   5.43840972e-04   8.33835578e-04  -1.63296951e-03
    1.84396630e-03  -1.63494109e-03  -4.13973644e-03   9.93769874e-03
   -1.21937858e-02   1.07145282e-02  -3.50315085e-03   8.43229154e-03
    5.97796792e-03   7.19034767e-05]
 [  4.14076160e-03   1.49650267e-03   7.37848988e-03  -5.89920432e-03
    6.43978853e-03   2.56377513e-03   5.08002799e-03   6.34448830e-03
    2.48995221e-03  -9.09774452e-04   3.85030377e-03   1.95772826e-03
    1.02450172e-02  -8.23419500e-05]
 [ -1.58993713e-03   2.26292332e-03  -2.75211523e-03   7.45264689e-03
   -9.26048513e-04  -1.65945356e-03  -4.77375839e-03   1.51891806e-02
   -1.34561050e-02   1.02081968e-02  -5.44665508e-03   1.38347150e-02
   -1.23215340e-02   1.37929495e-04]
 [  7.85798120e-04   2.41554881e-03   1.78210384e-03  -9.60912755e-04
   -5.29459040e-03   3.47813067e-03  -1.96233126e-03   2.84434039e-03
    1.35618930e-03  -1.21362974e-03   2.00095401e-03   1.95225907e-03
    7.85679139e-03   4.24680697e-05]
 [  7.59350445e-03  -1.94676177e-02   4.10676580e-05  -1.23607006e-02
    8.17922958e-03   1.16830267e-03   2.88827243e-02  -5.40019464e-02
    5.85324462e-02  -3.58495151e-02   2.00269831e-02  -5.54215649e-02
    3.18534999e-02  -1.65913946e-03]
 [ -7.57996905e-04   1.48878162e-02  -2.02212716e-02  -1.26859790e-02
    3.28634748e-02  -1.00350966e-02   2.60161747e-02   3.03667595e-02
    1.97929204e-02  -5.33650786e-03   1.85626625e-02   1.78251979e-04
   -1.00894504e-02   3.90389290e-04]
 [ -7.42013192e-03   1.64585909e-02  -3.66278515e-02  -1.15205242e-02
    6.69830320e-03   2.32797054e-02  -1.70235246e-02   4.02606929e-02
    5.74493635e-02  -5.28742501e-02   1.69008951e-02   2.07720815e-02
    1.42142293e-02   6.60588879e-04]
 [ -4.02348887e+00   4.78619594e+00  -5.20732849e+00   1.43378482e+00
   -1.86539229e-01  -8.95742471e-01  -2.38130301e+00  -1.14239048e-01
   -7.14676019e+00   6.04096194e+00  -5.28217010e+00   6.65615280e+00
   -4.69621834e+00   6.35692181e-01]
 [  1.10679242e+01  -1.45142504e+01   2.78669011e+01  -1.57162603e+01
    2.37260432e+01  -2.25193655e+01   1.09819093e+01  -2.93601263e+01
    1.87695403e+01  -2.66324515e+01   2.66129494e+01  -3.35883337e+01
   -9.61925708e+00  -2.26352472e-01]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]]
Mean squared error: 80571.86
Variance score: 0.27
/Users/spacecoffin/Development/sprbrg/lib/python3.5/site-packages/scipy/linalg/basic.py:884: RuntimeWarning: internal gelsd driver lwork query error, required iwork dimension not returned. This is likely the result of LAPACK bug 0038, fixed in LAPACK 3.2.2 (released July 21, 2010). Falling back to 'gelss' driver.
  warnings.warn(mesg, RuntimeWarning)

Preprocessing


In [42]:
# Scale data
standard_scaler = sk.preprocessing.StandardScaler()
X_scaled = standard_scaler.fit_transform(X_mtx)
#Xte_s = standard_scaler.transform(X_test)

robust_scaler = sk.preprocessing.RobustScaler()
X_rscaled = robust_scaler.fit_transform(X_mtx)
#Xte_r = robust_scaler.transform(X_test)

In [57]:
X_scaled.mean(axis=0)


Out[57]:
array([  2.95319325e-16,   1.93178806e-16,   3.21964677e-17,
        -5.66213743e-17,  -6.66133815e-18,   3.96696564e-16,
         5.88418203e-17,  -1.86517468e-16,   7.00828284e-17,
         3.03090886e-16,  -1.66533454e-17,   7.10542736e-17,
        -1.66533454e-16,   4.86277685e-16])

In [59]:
X_scaled.mean(axis=0).mean()


Out[59]:
1.0526797687506115e-16

In [61]:
X_scaled.std(axis=0)


Out[61]:
array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

In [43]:
X_train, X_test, y_train, y_test = sk.model_selection.train_test_split(
    X_scaled, pmtx, test_size=0.4, random_state=1)

In [44]:
# Create linear regression objectc
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(X_train, y_train)

# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
      % np.mean((regr.predict(X_test) - y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(X_test, y_test))


Coefficients: 
 [[ -1.16321270e-01   3.82759545e-02   3.54522472e-02  -2.71379638e-02
    3.49357740e-02  -1.90305103e-02  -5.18060153e-02   1.02756139e-01
   -1.37969854e-01   1.01095033e-01  -3.91266879e-02   7.60528902e-02
    5.51004476e-02   1.01775935e-01]
 [  6.30174076e-01   1.05325032e-01   3.13711785e-01  -9.80375889e-02
    1.22008193e-01   2.98420226e-02   6.35731312e-02   6.56022225e-02
    2.81732309e-02  -8.58401572e-03   4.30040385e-02   1.76572278e-02
    9.44309239e-02  -1.16551095e-01]
 [ -2.41969294e-01   1.59266319e-01  -1.17011881e-01   1.23853912e-01
   -1.75449093e-02  -1.93158324e-02  -5.97403733e-02   1.57056638e-01
   -1.52252703e-01   9.63176327e-02  -6.08336845e-02   1.24778663e-01
   -1.13570706e-01   1.95232608e-01]
 [  1.19589016e-01   1.70008221e-01   7.57698369e-02  -1.59691993e-02
   -1.00311277e-01   4.04850070e-02  -2.45572550e-02   2.94105753e-02
    1.53449669e-02  -1.14509885e-02   2.23486532e-02   1.76078998e-02
    7.24180405e-02   6.01115230e-02]
 [  1.15563998e+00  -1.37014621e+00   1.74607657e-03  -2.05419785e-01
    1.54963632e-01   1.35988973e-02   3.61447856e-01  -5.58381942e-01
    6.62281034e-01  -3.38251751e-01   2.23681353e-01  -4.99860587e-01
    2.93601793e-01  -2.34843261e+00]
 [ -1.15358005e-01   1.04781619e+00  -8.59749258e-01  -2.10825516e-01
    6.22631187e-01  -1.16807272e-01   3.25574916e-01   3.13993315e-01
    2.23952297e-01  -5.03516749e-02   2.07326357e-01   1.60769800e-03
   -9.29970255e-02   5.52577382e-01]
 [ -1.12925477e+00   1.15836854e+00  -1.55730900e+00  -1.91457077e-01
    1.26906010e-01   2.70972866e-01  -2.13037953e-01   4.16296919e-01
    6.50026205e-01  -4.98885623e-01   1.88766079e-01   1.87348461e-01
    1.31016160e-01   9.35031986e-01]
 [ -6.12326578e+02   3.36856227e+02  -2.21400360e+02   2.38277569e+01
   -3.53417106e+00  -1.04263306e+01  -2.98004044e+01  -1.18123560e+00
   -8.08639317e+01   5.69984265e+01  -5.89965520e+01   6.00334626e+01
   -4.32862365e+01   8.99791901e+02]
 [  1.68440485e+03  -1.02152433e+03   1.18481904e+03  -2.61185099e+02
    4.49513465e+02  -2.62122605e+02   1.37431204e+02  -3.03584694e+02
    2.12372989e+02  -2.51285780e+02   2.97240003e+02  -3.02941359e+02
   -8.86631341e+01  -3.20391106e+02]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]]
Mean squared error: 80571.86
Variance score: 0.27

In [64]:
y_test[0]


Out[64]:
array([  3.32561690e-01,   4.32786774e-01,   1.98115883e-01,
         4.70694013e-03,   2.00000000e+00,   4.00000000e+00,
         1.30000000e+01,   2.20000000e+02,   3.95106641e+03,
         1.60000000e+01])

In [71]:
X_test[0]


Out[71]:
array([ 1.01086499, -1.90257535, -0.26937053, -0.36982032,  0.42170525,
        1.26344082,  0.32565618, -0.63435796, -0.34336578,  1.15169182,
        0.46333517, -0.35546419, -0.22943205,  2.27780905])

In [70]:
regr.predict(X_test[0])


/Users/spacecoffin/Development/sprbrg/lib/python3.5/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.
  DeprecationWarning)
Out[70]:
array([[  5.81091297e-01,   6.46632233e-01,   4.05079195e-01,
          3.24762723e-01,   1.28734484e+00,   1.97150205e+00,
          1.01313047e+01,   1.11999703e+03,   3.38978192e+03,
          1.60000000e+01]])

In [72]:
y_test[0]


Out[72]:
array([  3.32561690e-01,   4.32786774e-01,   1.98115883e-01,
         4.70694013e-03,   2.00000000e+00,   4.00000000e+00,
         1.30000000e+01,   2.20000000e+02,   3.95106641e+03,
         1.60000000e+01])

In [ ]: