Sebastian Raschka, 2015

Python Machine Learning Essentials

Chapter 8 - Applying Machine Learning To Sentiment Analysis

Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).


In [1]:
%load_ext watermark
%watermark -a 'Sebastian Raschka' -u -d -v -p numpy,pandas,matplotlib,scikit-learn,nltk


Sebastian Raschka 
Last updated: 09/10/2015 

CPython 3.4.3
IPython 4.0.0

numpy 1.9.2
pandas 0.16.2
matplotlib 1.4.3
scikit-learn 0.16.1
nltk 3.0.4

In [ ]:
# to install watermark just uncomment the following line:
#%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py



Sections



Obtaining the IMDb movie review dataset

The IMDB movie review set can be downloaded from http://ai.stanford.edu/~amaas/data/sentiment/. After downloading the dataset, decompress the files.

A) If you are working with Linux or MacOS X, open a new terminal windowm cd into the download directory and execute

tar -zxf aclImdb_v1.tar.gz

B) If you are working with Windows, download an archiver such as 7Zip to extract the files from the download archive.


In [77]:
import pyprind
import pandas as pd
import os

labels = {'pos':1, 'neg':0}
pbar = pyprind.ProgBar(50000)
df = pd.DataFrame()
for s in ('test', 'train'):
    for l in ('pos', 'neg'):
        path ='./aclImdb/%s/%s' % (s, l)
        for file in os.listdir(path):
            with open(os.path.join(path, file), 'r') as infile:
                txt = infile.read()
            df = df.append([[txt, labels[l]]], ignore_index=True)
            pbar.update()
df.columns = ['review', 'sentiment']


0%                          100%
[##############################] | ETA[sec]: 0.000 
Total time elapsed: 725.001 sec

Shuffling the DataFrame:


In [78]:
import numpy as np
np.random.seed(0)
df = df.reindex(np.random.permutation(df.index))

Optional: Saving the assembled data as CSV file:


In [ ]:
df.to_csv('./movie_data.csv', index=False)

In [1]:
import pandas as pd
df = pd.read_csv('./movie_data.csv')
df.head(3)


Out[1]:
review sentiment
0 In 1974, the teenager Martha Moxley (Maggie Gr... 1
1 OK... so... I really like Kris Kristofferson a... 0
2 ***SPOILER*** Do not read this, if you think a... 0



Introducing the bag-of-words model

Transforming documents into feature vectors


In [2]:
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
docs = np.array([
        'The sun is shining',
        'The weather is sweet',
        'The sun is shining and the weather is sweet'])
bag = count.fit_transform(docs)

In [3]:
print(count.vocabulary_)


{'sweet': 4, 'is': 1, 'shining': 2, 'weather': 6, 'sun': 3, 'the': 5, 'and': 0}

In [4]:
print(bag.toarray())


[[0 1 1 1 0 1 0]
 [0 1 0 0 1 1 1]
 [1 2 1 1 1 2 1]]

Assessing word relevancy via term frequency-inverse document frequency


In [5]:
np.set_printoptions(precision=2)

In [6]:
from sklearn.feature_extraction.text import TfidfTransformer

tfidf = TfidfTransformer(use_idf=True, norm='l2', smooth_idf=True)
print(tfidf.fit_transform(count.fit_transform(docs)).toarray())


[[ 0.    0.43  0.56  0.56  0.    0.43  0.  ]
 [ 0.    0.43  0.    0.    0.56  0.43  0.56]
 [ 0.4   0.48  0.31  0.31  0.31  0.48  0.31]]

In [7]:
tf_is = 2 
n_docs = 3
idf_is = np.log((n_docs+1) / (3+1) )
tfidf_is = tf_is * (idf_is + 1)
print('tf-idf of term "is" = %.2f' % tfidf_is)


tf-idf of term "is" = 2.00

In [8]:
tfidf = TfidfTransformer(use_idf=True, norm=None, smooth_idf=True)
raw_tfidf = tfidf.fit_transform(count.fit_transform(docs)).toarray()[-1]
raw_tfidf


Out[8]:
array([ 1.69,  2.  ,  1.29,  1.29,  1.29,  2.  ,  1.29])

In [9]:
l2_tfidf = raw_tfidf / np.sqrt(np.sum(raw_tfidf**2))
l2_tfidf


Out[9]:
array([ 0.4 ,  0.48,  0.31,  0.31,  0.31,  0.48,  0.31])

Cleaning text data


In [10]:
df.loc[0, 'review'][-50:]


Out[10]:
'is seven.<br /><br />Title (Brazil): Not Available'

In [2]:
import re
def preprocessor(text):
    text = re.sub('<[^>]*>', '', text)
    emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)
    text = re.sub('[\W]+', ' ', text.lower()) + \
           ' '.join(emoticons).replace('-', '')
    return text

In [12]:
preprocessor(df.loc[0, 'review'][-50:])


Out[12]:
'is seven title brazil not available'

In [13]:
preprocessor("</a>This :) is :( a test :-)!")


Out[13]:
'this is a test :) :( :)'

In [14]:
df['review'] = df['review'].apply(preprocessor)

Processing documents into tokens


In [36]:
from nltk.stem.porter import PorterStemmer

porter = PorterStemmer()

def tokenizer(text):
    return text.split()
def tokenizer_porter(text):
    return [porter.stem(word) for word in text.split()]

In [37]:
tokenizer('runners like running and thus they run')


Out[37]:
['runners', 'like', 'running', 'and', 'thus', 'they', 'run']

In [38]:
tokenizer_porter('runners like running and thus they run')


Out[38]:
['runner', 'like', 'run', 'and', 'thu', 'they', 'run']

In [39]:
import nltk
nltk.download('stopwords')


[nltk_data] Downloading package stopwords to
[nltk_data]     /Users/sebastian/nltk_data...
[nltk_data]   Package stopwords is already up-to-date!
Out[39]:
True

In [41]:
from nltk.corpus import stopwords
stop = stopwords.words('english')
[w for w in tokenizer_porter('a runner likes running and runs a lot')[-10:] if w not in stop]


Out[41]:
['runner', 'like', 'run', 'run', 'lot']



Training a logistic regression model for document classification

Strip HTML and punctuation to speed up the GridSearch later:


In [19]:
X_train = df.loc[:25000, 'review'].values
y_train = df.loc[:25000, 'sentiment'].values
X_test = df.loc[25000:, 'review'].values
y_test = df.loc[25000:, 'sentiment'].values

In [21]:
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer(strip_accents=None, 
                        lowercase=False, 
                        preprocessor=None)

param_grid = [{'vect__ngram_range': [(1,1)],
               'vect__stop_words': [stop, None],
               'vect__tokenizer': [tokenizer, tokenizer_porter],
               'clf__penalty': ['l1', 'l2'],
               'clf__C': [1.0, 10.0, 100.0]},
             {'vect__ngram_range': [(1,1)],
               'vect__stop_words': [stop, None],
               'vect__tokenizer': [tokenizer, tokenizer_porter],
               'vect__use_idf':[False],
               'vect__norm':[None],
               'clf__penalty': ['l1', 'l2'],
               'clf__C': [1.0, 10.0, 100.0]},
             ]

lr_tfidf = Pipeline([('vect', tfidf),
                     ('clf', LogisticRegression(random_state=0))])

gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid, 
                           scoring='accuracy',
                           cv=5, verbose=1,
                           n_jobs=-1)

In [25]:
gs_lr_tfidf.fit(X_train, y_train)


Fitting 5 folds for each of 48 candidates, totalling 240 fits
[Parallel(n_jobs=-1)]: Done   1 jobs       | elapsed:   28.9s
[Parallel(n_jobs=-1)]: Done  50 jobs       | elapsed:  8.9min
[Parallel(n_jobs=-1)]: Done 200 jobs       | elapsed: 34.1min
[Parallel(n_jobs=-1)]: Done 226 out of 240 | elapsed: 38.9min remaining:  2.4min
[Parallel(n_jobs=-1)]: Done 240 out of 240 | elapsed: 40.7min finished
Out[25]:
GridSearchCV(cv=5,
       estimator=Pipeline(steps=[('vect', TfidfVectorizer(analyzer='word', binary=False, charset=None,
        charset_error=None, decode_error='strict',
        dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
        lowercase=False, max_df=1.0, max_features=None, min_df=1,
        ngram_range=(1, 1), norm='...alse, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=0, tol=0.0001))]),
       fit_params={}, iid=True, loss_func=None, n_jobs=-1,
       param_grid=[{'clf__C': [1.0, 10.0, 100.0], 'vect__stop_words': [['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 't...okenizer': [<function tokenizer at 0x7f6c704948c8>, <function tokenizer_porter at 0x7f6c70494950>]}],
       pre_dispatch='2*n_jobs', refit=True, score_func=None,
       scoring='accuracy', verbose=1)

In [26]:
print('Best parameter set: %s ' % gs_lr_tfidf.best_params_)
print('CV Accuracy: %.3f' % gs_lr_tfidf.best_score_)


Best parameter set: {'clf__C': 10.0, 'vect__stop_words': None, 'clf__penalty': 'l2', 'vect__tokenizer': <function tokenizer at 0x7f6c704948c8>, 'vect__ngram_range': (1, 1)} 
CV Accuracy: 0.897

In [27]:
clf = gs_lr_tfidf.best_estimator_
print('Test Accuracy: %.3f' % clf.score(X_test, y_test))


Test Accuracy: 0.899



Working with bigger data - online algorithms and out-of-core learning


In [8]:
import numpy as np
import re
from nltk.corpus import stopwords

stop = stopwords.words('english')

def tokenizer(text):
    text = re.sub('<[^>]*>', '', text)
    emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower())
    text = re.sub('[\W]+', ' ', text.lower()) + ' '.join(emoticons).replace('-', '')
    tokenized = [w for w in text.split() if w not in stop]
    return tokenized

def stream_docs(path):
    with open(path, 'r') as csv:
        next(csv) # skip header
        for line in csv:
            text, label = line[:-3], int(line[-2])
            yield text, label

In [9]:
next(stream_docs(path='./movie_data.csv'))


Out[9]:
('"In 1974, the teenager Martha Moxley (Maggie Grace) moves to the high-class area of Belle Haven, Greenwich, Connecticut. On the Mischief Night, eve of Halloween, she was murdered in the backyard of her house and her murder remained unsolved. Twenty-two years later, the writer Mark Fuhrman (Christopher Meloni), who is a former LA detective that has fallen in disgrace for perjury in O.J. Simpson trial and moved to Idaho, decides to investigate the case with his partner Stephen Weeks (Andrew Mitchell) with the purpose of writing a book. The locals squirm and do not welcome them, but with the support of the retired detective Steve Carroll (Robert Forster) that was in charge of the investigation in the 70\'s, they discover the criminal and a net of power and money to cover the murder.<br /><br />""Murder in Greenwich"" is a good TV movie, with the true story of a murder of a fifteen years old girl that was committed by a wealthy teenager whose mother was a Kennedy. The powerful and rich family used their influence to cover the murder for more than twenty years. However, a snoopy detective and convicted perjurer in disgrace was able to disclose how the hideous crime was committed. The screenplay shows the investigation of Mark and the last days of Martha in parallel, but there is a lack of the emotion in the dramatization. My vote is seven.<br /><br />Title (Brazil): Not Available"',
 1)

In [10]:
def get_minibatch(doc_stream, size):
    docs, y = [], []
    try:
        for _ in range(size):
            text, label = next(doc_stream)
            docs.append(text)
            y.append(label)
    except StopIteration:
        return None, None
    return docs, y

In [11]:
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier

vect = HashingVectorizer(decode_error='ignore', 
                         n_features=2**21,
                         preprocessor=None, 
                         tokenizer=tokenizer)

clf = SGDClassifier(loss='log', random_state=1, n_iter=1)
doc_stream = stream_docs(path='./movie_data.csv')

In [12]:
import pyprind
pbar = pyprind.ProgBar(45)

classes = np.array([0, 1])
for _ in range(45):
    X_train, y_train = get_minibatch(doc_stream, size=1000)
    if not X_train:
        break
    X_train = vect.transform(X_train)
    clf.partial_fit(X_train, y_train, classes=classes)
    pbar.update()


0%                          100%
[##############################] | ETA[sec]: 0.000 
Total time elapsed: 50.063 sec

In [13]:
X_test, y_test = get_minibatch(doc_stream, size=5000)
X_test = vect.transform(X_test)
print('Accuracy: %.3f' % clf.score(X_test, y_test))


Accuracy: 0.868

In [14]:
clf = clf.partial_fit(X_test, y_test)