Sebastian Raschka, 2015

Python Machine Learning Essentials

Chapter 2 - Training Machine Learning Algorithms for Classification

Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).


In [1]:
%load_ext watermark
%watermark -a 'Sebastian Raschka' -u -d -v -p numpy,pandas,matplotlib


---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-1-1b6e21bf998f> in <module>()
----> 1 get_ipython().magic('load_ext watermark')
      2 get_ipython().magic("watermark -a 'Sebastian Raschka' -u -d -v -p numpy,pandas,matplotlib")

/usr/lib/python3.5/site-packages/IPython/core/interactiveshell.py in magic(self, arg_s)
   2334         magic_name, _, magic_arg_s = arg_s.partition(' ')
   2335         magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
-> 2336         return self.run_line_magic(magic_name, magic_arg_s)
   2337 
   2338     #-------------------------------------------------------------------------

/usr/lib/python3.5/site-packages/IPython/core/interactiveshell.py in run_line_magic(self, magic_name, line)
   2255                 kwargs['local_ns'] = sys._getframe(stack_depth).f_locals
   2256             with self.builtin_trap:
-> 2257                 result = fn(*args,**kwargs)
   2258             return result
   2259 

<decorator-gen-64> in load_ext(self, module_str)

/usr/lib/python3.5/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)
    191     # but it's overkill for just that one bit of state.
    192     def magic_deco(arg):
--> 193         call = lambda f, *a, **k: f(*a, **k)
    194 
    195         if callable(arg):

/usr/lib/python3.5/site-packages/IPython/core/magics/extension.py in load_ext(self, module_str)
     64         if not module_str:
     65             raise UsageError('Missing module name.')
---> 66         res = self.shell.extension_manager.load_extension(module_str)
     67 
     68         if res == 'already loaded':

/usr/lib/python3.5/site-packages/IPython/core/extensions.py in load_extension(self, module_str)
     87             if module_str not in sys.modules:
     88                 with prepended_to_syspath(self.ipython_extension_dir):
---> 89                     __import__(module_str)
     90             mod = sys.modules[module_str]
     91             if self._call_load_ipython_extension(mod):

ImportError: No module named 'watermark'

In [ ]:
# to install watermark just uncomment the following line:
#%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py



Implementing a perceptron learning algorithm in Python


In [ ]:
import numpy as np


class Perceptron(object):
    """Perceptron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.errors_ = []

        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X, y):
                update = self.eta * (target - self.predict(xi))
                self.w_[1:] += update * xi
                self.w_[0] += update
                errors += int(update != 0.0)
            self.errors_.append(errors)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)



Training a perceptron model on the Iris dataset

Reading-in the Iris data


In [ ]:
import pandas as pd

df = pd.read_csv('https://archive.ics.uci.edu/ml/'
        'machine-learning-databases/iris/iris.data', header=None)
df.tail()



Plotting the Iris data


In [ ]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

# select setosa and versicolor
y = df.iloc[0:100, 4].values
y = np.where(y == 'Iris-setosa', -1, 1)

# extract sepal length and petal length
X = df.iloc[0:100, [0, 2]].values

# plot data
plt.scatter(X[:50, 0], X[:50, 1],
            color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1],
            color='blue', marker='x', label='versicolor')

plt.xlabel('petal length [cm]')
plt.ylabel('sepal length [cm]')
plt.legend(loc='upper left')

plt.tight_layout()
# plt.savefig('./iris_1.png', dpi=300)
plt.show()



Training the perceptron model


In [ ]:
ppn = Perceptron(eta=0.1, n_iter=10)

ppn.fit(X, y)

plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassifications')

plt.tight_layout()
# plt.savefig('./perceptron_1.png', dpi=300)
plt.show()



A function for plotting decision regions


In [ ]:
from matplotlib.colors import ListedColormap


def plot_decision_regions(X, y, classifier, resolution=0.02):

    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                         np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot class samples
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=cmap(idx),
                    marker=markers[idx], label=cl)

In [ ]:
plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')

plt.tight_layout()
# plt.savefig('./perceptron_2.png', dpi=300)
plt.show()



Adaptive linear neurons and the convergence of learning

Implementing an adaptive linear neuron in Python


In [ ]:
class AdalineGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=50):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

In [ ]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline - Learning rate 0.01')

ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)
ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline - Learning rate 0.0001')

plt.tight_layout()
# plt.savefig('./adaline_1.png', dpi=300)
plt.show()



Standardizing features and re-training adaline


In [ ]:
# standardize features
X_std = np.copy(X)
X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

In [ ]:
ada = AdalineGD(n_iter=15, eta=0.01)
ada.fit(X_std, y)

plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./adaline_2.png', dpi=300)
plt.show()

plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')

plt.tight_layout()
# plt.savefig('./adaline_3.png', dpi=300)
plt.show()



Large scale machine learning and stochastic gradient descent


In [ ]:
from numpy.random import seed

class AdalineSGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.
    shuffle : bool (default: True)
        Shuffles training data every epoch if True to prevent cycles.
    random_state : int (default: None)
        Set random state for shuffling and initializing the weights.
        
    """
    def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
        self.eta = eta
        self.n_iter = n_iter
        self.w_initialized = False
        self.shuffle = shuffle
        if random_state:
            seed(random_state)
        
    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self._initialize_weights(X.shape[1])
        self.cost_ = []
        for i in range(self.n_iter):
            if self.shuffle:
                X, y = self._shuffle(X, y)
            cost = []
            for xi, target in zip(X, y):
                cost.append(self._update_weights(xi, target))
            avg_cost = sum(cost)/len(y)
            self.cost_.append(avg_cost)
        return self

    def partial_fit(self, X, y):
        """Fit training data without reinitializing the weights"""
        if not self.w_initialized:
            self._initialize_weights(X.shape[1])
        if y.ravel().shape[0] > 1:
            for xi, target in zip(X, y):
                self._update_weights(xi, target)
        else:
            self._update_weights(X, y)
        return self

    def _shuffle(self, X, y):
        """Shuffle training data"""
        r = np.random.permutation(len(y))
        return X[r], y[r]
    
    def _initialize_weights(self, m):
        """Initialize weights to zeros"""
        self.w_ = np.zeros(1 + m)
        self.w_initialized = True
        
    def _update_weights(self, xi, target):
        """Apply Adaline learning rule to update the weights"""
        output = self.net_input(xi)
        error = (target - output)
        self.w_[1:] += self.eta * xi.dot(error)
        self.w_[0] += self.eta * error
        cost = 0.5 * error**2
        return cost
    
    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

In [ ]:
ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(X_std, y)

plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')

plt.tight_layout()
#plt.savefig('./adaline_4.png', dpi=300)
plt.show()

plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')

plt.tight_layout()
# plt.savefig('./adaline_5.png', dpi=300)
plt.show()

In [ ]:
ada.partial_fit(X_std[0, :], y[0])