This is the acquisition and probability model calculated in 2019-08.
It is NOT promoted to flight due to lack of change from 2018-11.
Copied from the 2018-11 notebook, modified slightly and re-run.
t_ccd >= -10 C
in order to provide reasonable estimates
of probability in regimes with little or no flight data.p_fail
(probit) as a
function of t_ccd
in a series of magnitude bins. The mag bins are driven by magnitudes
of ASVT simulated data.floor
parameter that sets a hard lower limit on p_fail
.
This is seen in data and represents other factors that cause acquisition failure
independent of t_ccd
. In other words, even for an arbitrarily cold CCD there will
still be a small fraction of acquisition failures. For flight data this can include
spoilers or an ionizing radiation flag.p_fail
model is adjusted by a box_delta
term which applies
a search-box dependent offset in probit space. The box_delta
term is defined to
have a value of 0.0 for box halfwidth = 120
.mag
) is computed by linearly interpolating the
binned quadratic coefficients as a function of mag
. The previous flight model
(spline
) did a global mag
- t_ccd
fit using a 5-element spline in the
mag
direction.dmag = mag_obs - mag_aca
(observed - catalog). This
turns out to be well-represented by an exp(-abs(dmag) / dmag_scale)
distribution. This contrasts with a gaussian that scales as exp(dmag^2)
.color != 1.5
star
probabilities accordingly and compute the weighted mean failure probability.dmag > 0
(stars observed to be fainter
than expected) than for dmag < 0
. As noted by JC this likely includes a
survival effect that stars which are actually much fainter don't get acquired
and do not get into the sample. Indeed using the observed distribution gives
a poor fit to flight data, so dmag_scale
for dmag > 0
was arbitrarily
increased from 2.8 to 4.0 in order to better fit flight data.mag > 10.1
.
The correction effectively made the model assume smaller search box sizes,
so for the canonical 120 arcsec box the model p_fail
is slightly increased
relative to the raw failure rate from ASVT.mag = 8.0
data from ASVT show a dependence on search-box size that is
flipped from usual. There are more failures for smaller search boxes,
though we are dealing with small number statistics (up to 3 fails per bin).
This caused problems in the fitting, so for this bin the box_delta
term
was simplied zeroed out and a good fit was obtained in the automatic fit
process. Since p_fail
is quite low in all cases this has little practical
impact either way.color = 1.5
star case is computationally
intensive.chandra_aca.star_probs
for production use, take a new approach of generating
a 3-d grid of p_fail
(in probit space) as a function of mag
, t_ccd
,
and halfwidth
. Do this for color != 1.5
and color = 1.5
.5.0 <= mag <= 12.0
, -16 <= t_ccd <= -1
, and
60 <= halfwidth <= 180
. Values outside that range are clipped.chandra_aca
and is quite fast.chandra_aca
(except for a hard-coded
value for the default model).
In [1]:
import sys
import os
from itertools import count
from pathlib import Path
# Include utils.py for asvt_utils
sys.path.insert(0, str(Path(os.environ['HOME'], 'git', 'skanb', 'pea-test-set')))
import utils as asvt_utils
import numpy as np
import matplotlib.pyplot as plt
from astropy.table import Table, vstack
from astropy.time import Time
import tables
from scipy import stats
from scipy.interpolate import CubicSpline
from Chandra.Time import DateTime
from astropy.table import Table
from chandra_aca.star_probs import (get_box_delta, broadcast_arrays,
acq_success_prob, grid_model_acq_prob)
from chandra_aca import star_probs
%matplotlib inline
In [2]:
MODEL_DATE = '2019-08'
MODEL_NAME = f'grid-floor-{MODEL_DATE}'
In [3]:
np.random.seed(0)
In [4]:
SKA = Path(os.environ['SKA'])
In [5]:
# Make a map of AGASC_ID to AGACS 1.7 MAG_ACA. The acq_stats.h5 file has whatever MAG_ACA
# was in place at the time of planning the loads.
# Define new term `red_mag_err` which is used here in place of the
# traditional COLOR1 == 1.5 test.
with tables.open_file(str(SKA / 'data' / 'agasc' / 'miniagasc_1p7.h5'), 'r') as h5:
agasc_mag_aca = h5.root.data.col('MAG_ACA')
agasc_id = h5.root.data.col('AGASC_ID')
has_color3 = h5.root.data.col('RSV3') != 0 #
red_star = np.isclose(h5.root.data.col('COLOR1'), 1.5)
mag_aca_err = h5.root.data.col('MAG_ACA_ERR') / 100
red_mag_err = red_star & ~has_color3 # MAG_ACA, MAG_ACA_ERR is potentially inaccurate
In [6]:
agasc1p7_idx = {id: idx for id, idx in zip(agasc_id, count())}
agasc1p7 = Table([agasc_mag_aca, mag_aca_err, red_mag_err],
names=['mag_aca', 'mag_aca_err', 'red_mag_err'], copy=False)
In [7]:
acq_file = str(SKA / 'data' / 'acq_stats' / 'acq_stats.h5')
with tables.open_file(str(acq_file), 'r') as h5:
cols = h5.root.data.cols
names = {'tstart': 'guide_tstart',
'obsid': 'obsid',
'obc_id': 'acqid',
'halfwidth': 'halfw',
'warm_pix': 'n100_warm_frac',
'mag_aca': 'mag_aca',
'mag_obs': 'mean_trak_mag',
'known_bad': 'known_bad',
'color': 'color1',
'img_func': 'img_func',
'ion_rad': 'ion_rad',
'sat_pix': 'sat_pix',
'agasc_id': 'agasc_id',
't_ccd': 'ccd_temp',
'slot': 'slot'}
acqs = Table([getattr(cols, h5_name)[:] for h5_name in names.values()],
names=list(names.keys()))
In [8]:
year_q0 = 1999.0 + 31. / 365.25 # Jan 31 approximately
acqs['year'] = Time(acqs['tstart'], format='cxcsec').decimalyear.astype('f4')
acqs['quarter'] = (np.trunc((acqs['year'] - year_q0) * 4)).astype('f4')
In [9]:
# Create 'fail' column, rewriting history as if the OBC always
# ignore the MS flag in ID'ing acq stars.
#
# CHECK: is ion_rad being ignored on-board?
# Answer: Not as of 2019-09
#
obc_id = acqs['obc_id']
obc_id_no_ms = (acqs['img_func'] == 'star') & ~acqs['sat_pix'] & ~acqs['ion_rad']
acqs['fail'] = np.where(obc_id | obc_id_no_ms, 0.0, 1.0)
# Re-map acq_stats database magnitudes for AGASC 1.7
acqs['mag_aca'] = [agasc1p7['mag_aca'][agasc1p7_idx[agasc_id]] for agasc_id in acqs['agasc_id']]
acqs['red_mag_err'] = [agasc1p7['red_mag_err'][agasc1p7_idx[agasc_id]] for agasc_id in acqs['agasc_id']]
acqs['mag_aca_err'] = [agasc1p7['mag_aca_err'][agasc1p7_idx[agasc_id]] for agasc_id in acqs['agasc_id']]
# Add a flag to distinguish flight from ASVT data
acqs['asvt'] = False
In [10]:
# Filter for year and mag
#
year_max = Time(f'{MODEL_DATE}-01').decimalyear
year_min = year_max - 4.5
acq_ok = ((acqs['year'] > year_min) & (acqs['year'] < year_max) &
(acqs['mag_aca'] > 7.0) & (acqs['mag_aca'] < 11) &
(~np.isclose(acqs['color'], 0.7)))
In [11]:
# Filter known bad obsids. NOTE: this is no longer doing anything, but
# consider updating the list of known bad obsids or obtaining programmically?
print('Filtering known bad obsids, start len = {}'.format(np.count_nonzero(acq_ok)))
bad_obsids = [
# Venus
2411,2414,6395,7306,7307,7308,7309,7311,7312,7313,7314,7315,7317,7318,7406,583,
7310,9741,9742,9743,9744,9745,9746,9747,9749,9752,9753,9748,7316,15292,16499,
16500,16501,16503,16504,16505,16506,16502,
]
for badid in bad_obsids:
acq_ok = acq_ok & (acqs['obsid'] != badid)
print('Filtering known bad obsids, end len = {}'.format(np.count_nonzero(acq_ok)))
In [12]:
peas = Table.read('pea_analysis_results_2018_299_CCD_temp_performance.csv', format='ascii.csv')
peas = asvt_utils.flatten_pea_test_data(peas)
peas = peas[peas['ccd_temp'] > -10.5]
In [13]:
# Version of ASVT PEA data that is more flight-like
fpeas = Table([peas['star_mag'], peas['ccd_temp'], peas['search_box_hw']],
names=['mag_aca', 't_ccd', 'halfwidth'])
fpeas['year'] = np.random.uniform(2019.0, 2019.5, size=len(peas))
fpeas['color'] = 1.0
fpeas['quarter'] = (np.trunc((fpeas['year'] - year_q0) * 4)).astype('f4')
fpeas['fail'] = 1.0 - peas['search_success']
fpeas['asvt'] = True
fpeas['red_mag_err'] = False
fpeas['mag_obs'] = 0.0
In [14]:
data_all = vstack([acqs[acq_ok]['year', 'fail', 'mag_aca', 't_ccd', 'halfwidth', 'quarter',
'color', 'asvt', 'red_mag_err', 'mag_obs'],
fpeas])
data_all.sort('year')
In [15]:
# Adjust probability (in probit space) for box size.
data_all['box_delta'] = get_box_delta(data_all['halfwidth'])
# Put in an ad-hoc penalty on ASVT data that introduces up to a -0.3 shift
# on probit probability. It goes from 0.0 for mag < 10.1 up to 0.3 at mag=10.4.
ok = data_all['asvt']
box_delta_tweak = (data_all['mag_aca'][ok] - 10.1).clip(0, 0.3)
data_all['box_delta'][ok] -= box_delta_tweak
# Another ad-hoc tweak: the mag=8.0 data show more failures at smaller
# box sizes. This confounds the fitting. For this case only just
# set the box deltas to zero and this makes the fit work.
ok = data_all['asvt'] & (data_all['mag_aca'] == 8)
data_all['box_delta'][ok] = 0.0
In [16]:
data_all = data_all.group_by('quarter')
data_all0 = data_all.copy() # For later augmentation with simulated red_mag_err stars
data_mean = data_all.groups.aggregate(np.mean)
In [17]:
def t_ccd_normed(t_ccd):
return (t_ccd + 8.0) / 8.0
def p_fail(pars,
t_ccd, tc2=None,
box_delta=0, rescale=True, probit=False):
"""
Acquisition probability model
:param pars: p0, p1, p2 (quadratic in t_ccd) and floor (min p_fail)
:param t_ccd: t_ccd (degC) or scaled t_ccd if rescale is False.
:param tc2: (scaled t_ccd) ** 2, this is just for faster fitting
:param box_delta: delta p_fail for search box size
:param rescale: rescale t_ccd to about -1 to 1 (makes P0, P1, P2 better-behaved)
:param probit: return probability as probit instead of 0 to 1.
"""
p0, p1, p2, floor = pars
tc = t_ccd_normed(t_ccd) if rescale else t_ccd
if tc2 is None:
tc2 = tc ** 2
# Make sure box_delta has right dimensions
tc, box_delta = np.broadcast_arrays(tc, box_delta)
# Compute the model. Also clip at +10 to avoid values that are
# exactly 1.0 at 64-bit precision.
probit_p_fail = (p0 + p1 * tc + p2 * tc2 + box_delta).clip(floor, 10)
# Possibly transform from probit to linear probability
out = probit_p_fail if probit else stats.norm.cdf(probit_p_fail)
return out
def p_acq_fail(data=None):
"""
Sherpa fit function wrapper to ensure proper use of data in fitting.
"""
if data is None:
data = data_all
tc = t_ccd_normed(data['t_ccd'])
tc2 = tc ** 2
box_delta = data['box_delta']
def sherpa_func(pars, x=None):
return p_fail(pars, tc, tc2, box_delta, rescale=False)
return sherpa_func
In [18]:
def calc_binom_stat(data, model, staterror=None, syserror=None, weight=None, bkg=None):
"""
Calculate log-likelihood for a binomial probability distribution
for a single trial at each point.
Defining p = model, then probability of seeing data == 1 is p and
probability of seeing data == 0 is (1 - p). Note here that ``data``
is strictly either 0.0 or 1.0, and np.where interprets those float
values as False or True respectively.
"""
fit_stat = -np.sum(np.log(np.where(data, model, 1.0 - model)))
return fit_stat, np.ones(1)
In [19]:
def fit_poly_model(data):
from sherpa import ui
comp_names = ['p0', 'p1', 'p2', 'floor']
data_id = 1
ui.set_method('simplex')
# Set up the custom binomial statistics
ones = np.ones(len(data))
ui.load_user_stat('binom_stat', calc_binom_stat, lambda x: ones)
ui.set_stat(binom_stat)
# Define the user model
ui.load_user_model(p_acq_fail(data), 'model')
ui.add_user_pars('model', comp_names)
ui.set_model(data_id, 'model')
ui.load_arrays(data_id, np.array(data['year']), np.array(data['fail'], dtype=np.float))
# Initial fit values from fit of all data
fmod = ui.get_model_component('model')
# Define initial values / min / max
# This is the p_fail value at t_ccd = -8.0
fmod.p0 = -2.605
fmod.p0.min = -10
fmod.p0.max = 10
# Linear slope of p_fail
fmod.p1 = 2.5
fmod.p1.min = 0.0
fmod.p1.max = 10
# Quadratic term. Only allow negative curvature, and not too much at that.
fmod.p2 = 0.0
fmod.p2.min = -1
fmod.p2.max = 0
# Floor to p_fail.
fmod.floor = -2.6
fmod.floor.min = -2.6
fmod.floor.max = -0.5
ui.fit(data_id)
return ui.get_fit_results()
In [20]:
def plot_fails_mag_aca_vs_t_ccd(mag_bins, data_all, year0=2015.0):
ok = (data_all['year'] > year0) & ~data_all['fail'].astype(bool)
da = data_all[ok]
fuzzx = np.random.uniform(-0.3, 0.3, len(da))
fuzzy = np.random.uniform(-0.125, 0.125, len(da))
plt.plot(da['t_ccd'] + fuzzx, da['mag_aca'] + fuzzy, '.C0', markersize=4)
ok = (data_all['year'] > year0) & data_all['fail'].astype(bool)
da = data_all[ok]
fuzzx = np.random.uniform(-0.3, 0.3, len(da))
fuzzy = np.random.uniform(-0.125, 0.125, len(da))
plt.plot(da['t_ccd'] + fuzzx, da['mag_aca'] + fuzzy, '.C1', markersize=4, alpha=0.8)
# plt.xlim(-18, -10)
# plt.ylim(7.0, 11.1)
x0, x1 = plt.xlim()
for y in mag_bins:
plt.plot([x0, x1], [y, y], '-', color='r', linewidth=2, alpha=0.8)
plt.xlabel('T_ccd (C)')
plt.ylabel('Mag_aca')
plt.title(f'Acq successes (blue) and failures (orange) since {year0}')
plt.grid()
In [21]:
def plot_fit_grouped(data, group_col, group_bin, log=False, colors='br', label=None, probit=False):
group = np.trunc(data[group_col] / group_bin)
data = data.group_by(group)
data_mean = data.groups.aggregate(np.mean)
len_groups = np.diff(data.groups.indices)
data_fail = data_mean['fail']
model_fail = np.array(data_mean['model'])
fail_sigmas = np.sqrt(data_fail * len_groups) / len_groups
# Possibly plot the data and model probabilities in probit space
if probit:
dp = stats.norm.ppf(np.clip(data_fail + fail_sigmas, 1e-6, 1-1e-6))
dm = stats.norm.ppf(np.clip(data_fail - fail_sigmas, 1e-6, 1-1e-6))
data_fail = stats.norm.ppf(data_fail)
model_fail = stats.norm.ppf(model_fail)
fail_sigmas = np.vstack([data_fail - dm, dp - data_fail])
plt.errorbar(data_mean[group_col], data_fail, yerr=fail_sigmas,
fmt='.' + colors[1], label=label, markersize=8)
plt.plot(data_mean[group_col], model_fail, '-' + colors[0])
if log:
ax = plt.gca()
ax.set_yscale('log')
In [22]:
def mag_filter(mag0, mag1):
ok = (data_all['mag_aca'] > mag0) & (data_all['mag_aca'] < mag1)
return ok
In [23]:
def t_ccd_filter(t_ccd0, t_ccd1):
ok = (data_all['t_ccd'] > t_ccd0) & (data_all['t_ccd'] < t_ccd1)
return ok
In [24]:
def wp_filter(wp0, wp1):
ok = (data_all['warm_pix'] > wp0) & (data_all['warm_pix'] < wp1)
return ok
In [25]:
mag_centers = np.array([6.3, 8.1, 9.1, 9.55, 9.75, 10.0, 10.25, 10.55, 10.75, 11.0])
mag_bins = (mag_centers[1:] + mag_centers[:-1]) / 2
mag_means = np.array([8.0, 9.0, 9.5, 9.75, 10.0, 10.25, 10.5, 10.75])
In [26]:
for m0, m1, mm in zip(mag_bins[:-1], mag_bins[1:], mag_means):
ok = (data_all['asvt'] == False) & (data_all['mag_aca'] >= m0) & (data_all['mag_aca'] < m1)
print(f"m0={m0:.2f} m1={m1:.2f} mean_mag={data_all['mag_aca'][ok].mean():.2f} vs. {mm}")
In [27]:
plt.figure(figsize=(10, 14))
for subplot, halfwidth in enumerate([60, 80, 100, 120, 140, 160, 180]):
plt.subplot(4, 2, subplot + 1)
ok = (data_all['halfwidth'] > halfwidth - 10) & (data_all['halfwidth'] <= halfwidth + 10)
plot_fails_mag_aca_vs_t_ccd(mag_bins, data_all[ok])
plt.title(f'Acq success (blue) fail (orange) box={halfwidth}')
plt.tight_layout()
In [28]:
# fit = fit_sota_model(data_all['color'] == 1.5, ms_disabled=True)
mask_no_1p5 = ((data_all['red_mag_err'] == False) &
(data_all['t_ccd'] > -18) &
(data_all['t_ccd'] < -0.5))
In [29]:
mag0s, mag1s = mag_bins[:-1], mag_bins[1:]
fits = {}
masks = []
for m0, m1 in zip(mag0s, mag1s):
print(m0, m1)
mask = mask_no_1p5 & mag_filter(m0, m1) # & t_ccd_filter(-10.5, 0)
print(np.count_nonzero(mask))
masks.append(mask)
fits[m0, m1] = fit_poly_model(data_all[mask])
In [30]:
colors = [f'kC{i}' for i in range(9)]
plt.figure(figsize=(13, 4))
for subplot in (1, 2):
plt.subplot(1, 2, subplot)
probit = (subplot == 2)
for m0_m1, color, mask, mag_mean in zip(list(fits), colors, masks, mag_means):
fit = fits[m0_m1]
data = data_all[mask]
data['model'] = p_acq_fail(data)(fit.parvals)
plot_fit_grouped(data, 't_ccd', 2.0,
probit=probit, colors=[color, color], label=str(mag_mean))
plt.grid()
if probit:
plt.ylim(-3.5, 2.5)
plt.ylabel('Probit(p_fail)' if probit else 'p_fail')
plt.xlabel('T_ccd');
plt.legend(fontsize='small')
In [31]:
# This computes probabilities for 120 arcsec boxes, corresponding to raw data
t_ccds = np.linspace(-16, -0, 20)
plt.figure(figsize=(13, 4))
for subplot in (1, 2):
plt.subplot(1, 2, subplot)
probit = (subplot == 2)
for m0_m1, color, mag_mean in zip(list(fits), colors, mag_means):
fit = fits[m0_m1]
probs = p_fail(fit.parvals, t_ccds)
if probit:
probs = stats.norm.ppf(probs)
plt.plot(t_ccds, probs, label=f'{mag_mean:.2f}')
plt.legend()
plt.xlabel('T_ccd')
plt.ylabel('P_fail' if subplot == 1 else 'Probit(p_fail)')
plt.title('P_fail for halfwidth=120')
plt.grid()
In [32]:
mag_bin_centers = np.concatenate([[5.0], mag_means, [13.0]])
fit_parvals = []
for fit in fits.values():
fit_parvals.extend(fit.parvals)
fit_parvals = np.array(fit_parvals).reshape(-1, 4)
parvals_mag12 = [[5, 0, 0, 0]]
parvals_mag5 = [[-5, 0, 0, -3]]
fit_parvals = np.concatenate([parvals_mag5, fit_parvals, parvals_mag12])
fit_parvals = fit_parvals.transpose()
for ps, parname in zip(fit_parvals, fit.parnames):
plt.plot(mag_bin_centers, ps, '.-', label=parname)
plt.legend(fontsize='small')
plt.title('Model coefficients vs. mag')
plt.xlabel('Mag_aca')
plt.grid()
dmag = mag_obs - mag_aca
(observed - catalog). This
turns out to be well-represented by an exp(-abs(dmag) / dmag_scale)
distribution. This contrasts with a gaussian that scales as exp(dmag^2)
.color != 1.5
star
probabilities accordingly and compute the weighted mean failure probability.
In [33]:
def plot_mag_errs(acqs, red_mag_err):
ok = ((acqs['red_mag_err'] == red_mag_err) &
(acqs['mag_obs'] > 0) &
(acqs['img_func'] == 'star'))
dok = acqs[ok]
dmag = dok['mag_obs'] - dok['mag_aca']
plt.figure(figsize=(14, 4.5))
plt.subplot(1, 3, 1)
plt.plot(dok['mag_aca'], dmag, '.')
plt.plot(dok['mag_aca'], dmag, ',', alpha=0.3)
plt.xlabel('mag_aca (catalog)')
plt.ylabel('Mag err')
plt.title('Mag err (observed - catalog) vs mag_aca')
plt.xlim(5, 11.5)
plt.ylim(-4, 2)
plt.grid()
plt.subplot(1, 3, 2)
plt.hist(dmag, bins=np.arange(-3, 4, 0.2), log=True);
plt.grid()
plt.xlabel('Mag err')
plt.title('Mag err (observed - catalog)')
plt.xlim(-4, 2)
plt.subplot(1, 3, 3)
plt.hist(dmag, bins=100, cumulative=-1, normed=True)
plt.xlim(-1, 1)
plt.xlabel('Mag err')
plt.title('Mag err (observed - catalog)')
plt.grid()
In [34]:
plot_mag_errs(acqs, red_mag_err=True)
plt.subplot(1, 3, 2)
plt.plot([-2.8, 0], [1, 7000], 'r');
plt.plot([0, 4.0], [7000, 1], 'r');
plt.xlim(-4, 4);
In [35]:
# Define parameters / metadata for floor model
FLOOR = {'fit_parvals': fit_parvals,
'mag_bin_centers': mag_bin_centers}
In [36]:
def calc_1p5_mag_err_weights():
x = np.linspace(-2.8, 4, 18)
ly = 3.8 * (1 - np.abs(x) / np.where(x > 0, 4.0, 2.8))
y = 10 ** ly
return x, y / y.sum()
In [37]:
FLOOR['mag_errs_1p5'], FLOOR['mag_err_weights_1p5'] = calc_1p5_mag_err_weights()
In [38]:
plt.semilogy(FLOOR['mag_errs_1p5'], FLOOR['mag_err_weights_1p5'])
plt.grid()
In [39]:
def floor_model_acq_prob(mag, t_ccd, color=0.6, halfwidth=120, probit=False):
"""
Acquisition probability model
:param mag: Star magnitude(s)
:param t_ccd: CCD temperature(s)
:param color: Star color (compared to 1.5 to decide which p_fail model to use)
:param halfwidth: Search box size (arcsec)
:param probit: Return probit of failure probability
:returns: acquisition failure probability
"""
parvals = FLOOR['fit_parvals']
mag_bin_centers = FLOOR['mag_bin_centers']
mag_errs_1p5 = FLOOR['mag_errs_1p5']
mag_err_weights_1p5 = FLOOR['mag_err_weights_1p5']
# Make sure inputs have right dimensions
is_scalar, t_ccds, mags, halfwidths, colors = broadcast_arrays(t_ccd, mag, halfwidth, color)
box_deltas = get_box_delta(halfwidths)
p_fails = []
for t_ccd, mag, box_delta, color in zip(t_ccds.flat, mags.flat, box_deltas.flat, colors.flat):
if np.isclose(color, 1.5):
pars_list = [[np.interp(mag + mag_err_1p5, mag_bin_centers, ps) for ps in parvals]
for mag_err_1p5 in mag_errs_1p5]
weights = mag_err_weights_1p5
if probit:
raise ValueError('cannot use probit=True with color=1.5 stars')
else:
pars_list = [[np.interp(mag, mag_bin_centers, ps) for ps in parvals]]
weights = [1]
pf = sum(weight * p_fail(pars, t_ccd, box_delta=box_delta, probit=probit)
for pars, weight in zip(pars_list, weights))
p_fails.append(pf)
out = np.array(p_fails).reshape(t_ccds.shape)
return out
In [40]:
mags, t_ccds = np.mgrid[8.75:10.75:30j, -16:-4:30j]
plt.figure(figsize=(13, 4))
for subplot, color in enumerate([1.0, 1.5]):
plt.subplot(1, 2, subplot + 1)
p_fails = floor_model_acq_prob(mags, t_ccds, probit=False, color=color)
cs = plt.contour(t_ccds, mags, p_fails, levels=[0.05, 0.1, 0.2, 0.5, 0.75, 0.9],
colors=['g', 'g', 'b', 'c', 'm', 'r'])
plt.clabel(cs, inline=1, fontsize=10)
plt.grid()
plt.xlim(-17, -4)
plt.ylim(8.5, 11.0)
plt.xlabel('T_ccd (degC)')
plt.ylabel('Mag_ACA')
plt.title(f'Failure probability color={color}');
In [41]:
mags = np.linspace(8, 11, 301)
plt.figure()
for t_ccd in np.arange(-16, -0.9, 1):
p_fails = floor_model_acq_prob(mags, t_ccd, probit=True)
plt.plot(mags, p_fails)
plt.grid()
plt.xlim(8, 11)
Out[41]:
In [42]:
# NOTE this is in chandra_aca.star_probs as of version 4.27
from scipy.stats import binom
def binom_ppf(k, n, conf, n_sample=1000):
"""
Compute percent point function (inverse of CDF) for binomial, where
the percentage is with respect to the "p" (binomial probability) parameter
not the "k" parameter.
The following example returns the 1-sigma (0.17 - 0.84) confidence interval
on the true binomial probability for an experiment with 4 successes in 5 trials.
Example::
>>> binom_ppf(4, 5, [0.17, 0.84])
array([ 0.55463945, 0.87748177])
:param k: int, number of successes (0 < k <= n)
:param n: int, number of trials
:param conf: float, array of floats, percent point values
:param n_sample: number of PMF samples for interpolation
:return: percent point function values corresponding to ``conf``
"""
ps = np.linspace(0, 1, n_sample)
vals = binom.pmf(k=k, n=n, p=ps)
return np.interp(conf, xp=np.cumsum(vals) / np.sum(vals), fp=ps)
In [43]:
binom_ppf(4, 5, [0.17, 0.84])
Out[43]:
In [44]:
n = 156
k = 127
binom_ppf(k, n, [0.17, 0.84])
Out[44]:
In [45]:
def calc_binned_pfail(data_all, mag, dmag, t_ccd, dt, halfwidth=120):
da = data_all[~data_all['asvt'] & (data_all['halfwidth'] == halfwidth)]
fail = da['fail'].astype(bool)
ok = (np.abs(da['mag_aca'] - mag) < dmag) & (np.abs(da['t_ccd'] - t_ccd) < dt)
n_fail = np.count_nonzero(fail[ok])
n_acq = np.count_nonzero(ok)
p_fail = n_fail / n_acq
p_fail_lower, p_fail_upper = binom_ppf(n_fail, n_acq, [0.17, 0.84])
mean_t_ccd = np.mean(da['t_ccd'][ok])
mean_mag = np.mean(da['mag_aca'][ok])
return p_fail, p_fail_lower, p_fail_upper, mean_t_ccd, mean_mag, n_fail, n_acq
In [46]:
halfwidth = 120
pfs_list = []
for mag in (10.0, 10.3, 10.55):
pfs = []
for t_ccd in np.linspace(-15, -10, 6):
pf = calc_binned_pfail(data_all, mag, 0.2, t_ccd, 0.5, halfwidth=halfwidth)
pfs.append(pf)
print(f'mag={mag} mean_mag_aca={pf[4]:.2f} t_ccd=f{pf[3]:.2f} p_fail={pf[-2]}/{pf[-1]}={pf[0]:.2f}')
pfs_list.append(pfs)
In [47]:
def plot_floor_and_flight(color, halfwidth=120):
# This computes probabilities for 120 arcsec boxes, corresponding to raw data
t_ccds = np.linspace(-16, -6, 20)
mag_acas = np.array([9.5, 10.0, 10.25, 10.5, 10.75])
for ii, mag_aca in enumerate(reversed(mag_acas)):
flight_probs = 1 - acq_success_prob(date='2018-05-01T00:00:00',
t_ccd=t_ccds, mag=mag_aca, color=color, halfwidth=halfwidth)
new_probs = floor_model_acq_prob(mag_aca, t_ccds, color=color, halfwidth=halfwidth)
plt.plot(t_ccds, flight_probs, '--', color=f'C{ii}')
plt.plot(t_ccds, new_probs, '-', color=f'C{ii}', label=f'mag_aca={mag_aca}')
if color != 1.5:
# pf1, pf2 have p_fail, p_fail_lower, p_fail_upper, mean_t_ccd, mean_mag_aca, n_fail, n_acq
for pfs, clr in zip(pfs_list, ('C3', 'C2', 'C1')):
for pf in pfs:
yerr = np.array([pf[0] - pf[1], pf[2] - pf[0]]).reshape(2, 1)
plt.errorbar(pf[3], pf[0], xerr=0.5, yerr=yerr, color=clr)
# plt.xlim(-16, None)
plt.legend()
plt.xlabel('T_ccd')
plt.ylabel('P_fail')
plt.title(f'P_fail (color={color}: new (solid) and flight (dashed)')
plt.grid()
In [48]:
plot_floor_and_flight(color=1.0)
In [49]:
plt.figure(figsize=(13, 4))
plt.subplot(1, 2, 1)
for m0, m1, color in [(9, 9.5, 'C0'), (9.5, 10, 'C1'), (10, 10.3, 'C2'), (10.3, 10.7, 'C3')]:
ok = data_all['red_mag_err'] & mag_filter(m0, m1) & t_ccd_filter(-16, -10)
data = data_all[ok]
data['model'] = floor_model_acq_prob(data['mag_aca'], data['t_ccd'], color=1.5, halfwidth=data['halfwidth'])
plot_fit_grouped(data, 't_ccd', 2.0,
probit=False, colors=[color, color], label=f'{m0}-{m1}')
plt.ylim(0, 1.0)
plt.legend(fontsize='small')
plt.grid()
plt.xlabel('T_ccd')
plt.title('COLOR1=1.5 acquisition probabilities')
plt.subplot(1, 2, 2)
plot_floor_and_flight(color=1.5)
In [50]:
def write_model_as_fits(model_name,
comment=None,
mag0=5, mag1=12, n_mag=141, # 0.05 mag spacing
t_ccd0=-16, t_ccd1=-1, n_t_ccd=31, # 0.5 degC spacing
halfw0=60, halfw1=180, n_halfw=7, # 20 arcsec spacing
):
from astropy.io import fits
mags = np.linspace(mag0, mag1, n_mag)
t_ccds = np.linspace(t_ccd0, t_ccd1, n_t_ccd)
halfws = np.linspace(halfw0, halfw1, n_halfw)
mag, t_ccd, halfw = np.meshgrid(mags, t_ccds, halfws, indexing='ij')
print('Computing probs, stand by...')
# COLOR = 1.5 (stars with poor mag estimates)
p_fails = floor_model_acq_prob(mag, t_ccd, halfwidth=halfw, probit=False, color=1.5)
p_fails_probit_1p5 = stats.norm.ppf(p_fails)
# COLOR not 1.5 (most stars)
p_fails_probit = floor_model_acq_prob(mag, t_ccd, halfwidth=halfw, probit=True, color=1.0)
hdu = fits.PrimaryHDU()
if comment:
hdu.header['comment'] = comment
hdu.header['date'] = DateTime().fits
hdu.header['mdl_name'] = model_name
hdu.header['mag_lo'] = mags[0]
hdu.header['mag_hi'] = mags[-1]
hdu.header['mag_n'] = len(mags)
hdu.header['t_ccd_lo'] = t_ccds[0]
hdu.header['t_ccd_hi'] = t_ccds[-1]
hdu.header['t_ccd_n'] = len(t_ccds)
hdu.header['halfw_lo'] = halfws[0]
hdu.header['halfw_hi'] = halfws[-1]
hdu.header['halfw_n'] = len(halfws)
hdu1 = fits.ImageHDU(p_fails_probit.astype(np.float32))
hdu1.header['comment'] = 'COLOR1 != 1.5 (good mag estimates)'
hdu2 = fits.ImageHDU(p_fails_probit_1p5.astype(np.float32))
hdu2.header['comment'] = 'COLOR1 == 1.5 (poor mag estimates)'
hdus = fits.HDUList([hdu, hdu1, hdu2])
hdus.writeto(f'{model_name}.fits.gz', overwrite=True)
In [51]:
comment = f'Created with fit_acq_model-{MODEL_DATE}-binned-poly-binom-floor.ipynb in aca_stats repository'
write_model_as_fits(MODEL_NAME, comment=comment)
In [52]:
# Fudge the chandra_aca.star_probs global STAR_PROBS_DATA_DIR temporarily
# in order to load the dev model that was just created locally
_dir_orig = star_probs.STAR_PROBS_DATA_DIR
star_probs.STAR_PROBS_DATA_DIR = '.'
grid_model_acq_prob(model=MODEL_NAME)
star_probs.STAR_PROBS_DATA_DIR = _dir_orig
In [53]:
# Remake standard plot comparing grouped data to model, but now use
# chandra_aca.star_probs grid_model_acq_prob function with the newly
# generated 3-d FITS model that we just loaded.
colors = [f'kC{i}' for i in range(9)]
plt.figure(figsize=(13, 4))
for subplot in (1, 2):
plt.subplot(1, 2, subplot)
probit = (subplot == 2)
for m0_m1, color, mask, mag_mean in zip(list(fits), colors, masks, mag_means):
fit = fits[m0_m1]
data = data_all[mask]
data['model'] = 1 - grid_model_acq_prob(data['mag_aca'], data['t_ccd'],
halfwidth=data['halfwidth'],
model=MODEL_NAME)
plot_fit_grouped(data, 't_ccd', 2.0,
probit=probit, colors=[color, color], label=str(mag_mean))
plt.grid()
if probit:
plt.ylim(-3.5, 2.5)
plt.ylabel('Probit(p_fail)' if probit else 'p_fail')
plt.xlabel('T_ccd');
plt.legend(fontsize='small')
In [54]:
# Check chandra_aca implementation vs. native model from this notebook
mags = np.linspace(5, 12, 40)
t_ccds = np.linspace(-16, -1, 40)
halfws = np.linspace(60, 180, 7)
mag, t_ccd, halfw = np.meshgrid(mags, t_ccds, halfws, indexing='ij')
# First color != 1.5
# Notebook
nb_probs = floor_model_acq_prob(mag, t_ccd, halfwidth=halfw, probit=True, color=1.0)
# Chandra_aca. Note that grid_model returns p_success, so need to negate it.
ca_probs = -grid_model_acq_prob(mag, t_ccd, halfwidth=halfw, probit=True, color=1.0,
model=MODEL_NAME)
assert nb_probs.shape == ca_probs.shape
print('Max difference is {:.3f}'.format(np.max(np.abs(nb_probs - ca_probs))))
assert np.allclose(nb_probs, ca_probs, rtol=0, atol=0.1)
In [55]:
d_probs = (nb_probs - ca_probs)[:, :, 3]
plt.imshow(d_probs, origin='lower', extent=[-16, -1, 5, 12], aspect='auto', cmap='jet')
plt.colorbar();
plt.title('Delta between probit p_fail: analytical vs. gridded');
In [56]:
mags = np.linspace(8, 11, 200)
plt.figure()
for ii, t_ccd in enumerate(np.arange(-16, -0.9, 2)):
p_fails = floor_model_acq_prob(mags, t_ccd, probit=True)
plt.plot(mags, p_fails, color=f'C{ii}')
p_success = grid_model_acq_prob(mags, t_ccd, probit=True, model=MODEL_NAME)
plt.plot(mags, -p_success, color=f'C{ii}')
plt.grid()
plt.xlim(8, 11)
Out[56]:
In [57]:
mags = [9, 9.5, 10.5]
t_ccds = [-10, -5]
halfws = [60, 120, 160]
mag, t_ccd, halfw = np.meshgrid(mags, t_ccds, halfws, indexing='ij')
probs = floor_model_acq_prob(mag, t_ccd, halfwidth=halfw, probit=True, color=1.0)
print(repr(probs.round(3).flatten()))
probs = floor_model_acq_prob(mag, t_ccd, halfwidth=halfw, probit=False, color=1.5)
probs = stats.norm.ppf(probs)
print(repr(probs.round(3).flatten()))