Applying GridSearchCV
GridSearchCV(cv=10, error_score='raise',
estimator=SVC(C=1.0, cache_size=500, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=10000, probability=False, random_state=0, shrinking=True,
tol=0.001, verbose=True),
fit_params={}, iid=True, n_jobs=10,
param_grid=[{'C': [1, 10, 100, 1000], 'gamma': [0.1, 0.01, 0.001, 0.0001], 'kernel': ['rbf']}, {'C': [1, 10], 'gamma': [0.01, 0.001], 'kernel': ['poly']}, {'C': [1, 10], 'gamma': [0.01, 0.001], 'kernel': ['sigmoid']}],
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring='accuracy', verbose=3)
Fitting 10 folds for each of 24 candidates, totalling 240 fits
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[CV] C=1, gamma=0.1, kernel=rbf ......................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.103264, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.103654, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.102735, total= 6.3min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.103654, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.103540, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.103792, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.102735, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.103471, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.102941, total= 6.4min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ....... C=1, gamma=0.1, kernel=rbf, score=0.102872, total= 6.5min
[CV] C=1, gamma=0.01, kernel=rbf .....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.360133, total= 6.1min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.342648, total= 6.1min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[Parallel(n_jobs=10)]: Done 12 tasks | elapsed: 17.9min
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.349101, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.376744, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.348232, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.373582, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.358478, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.363393, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.384102, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ...... C=1, gamma=0.01, kernel=rbf, score=0.366979, total= 6.2min
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.574751, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.595349, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.572285, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.574850, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.596526, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.575050, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.596128, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.575818, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.591061, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] ..... C=1, gamma=0.001, kernel=rbf, score=0.572193, total= 3.1min
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.521595, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.510963, total= 3.7min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.507651, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.514343, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.486342, total= 3.7min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.528705, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.501002, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.529726, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.525017, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] .... C=1, gamma=0.0001, kernel=rbf, score=0.502674, total= 3.6min
[CV] C=10, gamma=0.1, kernel=rbf .....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.104319, total= 6.3min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.104319, total= 6.4min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.102735, total= 6.3min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.103264, total= 6.3min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.102735, total= 6.3min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.105544, total= 6.3min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.102872, total= 6.3min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.104139, total= 6.4min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.103792, total= 6.5min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ...... C=10, gamma=0.1, kernel=rbf, score=0.102941, total= 6.3min
[CV] C=10, gamma=0.01, kernel=rbf ....................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.405316, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.379747, total= 6.1min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.372588, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.378738, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.368245, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.400934, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.410822, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.391856, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.396390, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] ..... C=10, gamma=0.01, kernel=rbf, score=0.388110, total= 6.2min
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.593355, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.591362, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.585724, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.599600, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.612150, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.594145, total= 3.8min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.607071, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.615230, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.582888, total= 3.6min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] .... C=10, gamma=0.001, kernel=rbf, score=0.587842, total= 3.7min
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.530233, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.545515, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.508994, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.534930, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.527018, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.555704, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.552737, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.527054, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.549098, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ... C=10, gamma=0.0001, kernel=rbf, score=0.540107, total= 2.7min
[CV] C=100, gamma=0.1, kernel=rbf ....................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.104319, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.103792, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.104319, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.103264, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.102735, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.102735, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.102872, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.102941, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.104139, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] ..... C=100, gamma=0.1, kernel=rbf, score=0.105544, total= 6.3min
[CV] C=100, gamma=0.01, kernel=rbf ...................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.405316, total= 6.2min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.378738, total= 6.1min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.368245, total= 6.1min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.379747, total= 6.2min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.372588, total= 6.2min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.400934, total= 6.2min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.388110, total= 6.1min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.391856, total= 6.2min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.410822, total= 6.2min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] .... C=100, gamma=0.01, kernel=rbf, score=0.396390, total= 6.2min
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.590033, total= 3.8min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.590033, total= 3.8min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.594810, total= 3.7min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.602931, total= 3.7min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.585057, total= 3.8min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.603736, total= 3.8min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.614152, total= 3.7min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.618570, total= 3.7min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[Parallel(n_jobs=10)]: Done 108 tasks | elapsed: 83.3min
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.583556, total= 3.7min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[LibSVM][CV] ... C=100, gamma=0.001, kernel=rbf, score=0.588510, total= 3.8min
[CV] C=100, gamma=0.0001, kernel=rbf .................................
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.523588, total= 2.6min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.528277, total= 2.6min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.530233, total= 2.7min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.524317, total= 2.6min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.525684, total= 2.6min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.537742, total= 2.6min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.534356, total= 2.6min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.543391, total= 2.7min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.533422, total= 2.6min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .. C=100, gamma=0.0001, kernel=rbf, score=0.534402, total= 2.7min
[CV] C=1000, gamma=0.1, kernel=rbf ...................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.104319, total= 6.3min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.104319, total= 6.4min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.103264, total= 6.3min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.103792, total= 6.4min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.102735, total= 6.4min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.102735, total= 6.3min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.104139, total= 6.3min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.105544, total= 6.4min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.102941, total= 6.3min
[LibSVM][CV] .... C=1000, gamma=0.1, kernel=rbf, score=0.102872, total= 6.4min
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[CV] C=1000, gamma=0.01, kernel=rbf ..................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.405316, total= 6.2min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.372588, total= 6.1min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.378738, total= 6.2min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.379747, total= 6.2min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.368245, total= 6.1min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.400934, total= 6.2min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.391856, total= 6.2min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.410822, total= 6.1min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.388110, total= 6.2min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] ... C=1000, gamma=0.01, kernel=rbf, score=0.396390, total= 6.2min
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.594810, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.590033, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.590033, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.602931, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.614152, total= 3.6min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.603736, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.585057, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.618570, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.583556, total= 3.6min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[LibSVM][CV] .. C=1000, gamma=0.001, kernel=rbf, score=0.588510, total= 3.7min
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.541639, total= 2.5min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.522924, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.517631, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.522924, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.497665, total= 2.5min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.517011, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.536716, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.540414, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.522378, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] . C=1000, gamma=0.0001, kernel=rbf, score=0.518717, total= 2.6min
[CV] C=1, gamma=0.01, kernel=poly ....................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.572757, total= 5.2min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.600000, total= 5.2min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.595603, total= 5.2min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.579508, total= 5.3min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.577051, total= 5.2min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.591061, total= 5.2min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.584502, total= 5.2min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.594522, total= 5.3min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.590788, total= 5.3min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] ..... C=1, gamma=0.01, kernel=poly, score=0.581551, total= 5.3min
[CV] C=1, gamma=0.001, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.338870, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.362791, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.353764, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.345309, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.340227, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.377585, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.381842, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.350033, total= 5.0min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.343353, total= 5.1min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=1, gamma=0.001, kernel=poly, score=0.354947, total= 5.1min
[CV] C=10, gamma=0.01, kernel=poly ...................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.572757, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.600000, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.579508, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.595603, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.577051, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.591061, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.590788, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.594522, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.584502, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] .... C=10, gamma=0.01, kernel=poly, score=0.581551, total= 5.1min
[CV] C=10, gamma=0.001, kernel=poly ..................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.532890, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.576080, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.534356, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.542914, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.562292, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.562375, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.554740, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.559786, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.553774, total= 4.9min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] ... C=10, gamma=0.001, kernel=poly, score=0.550134, total= 4.8min
[CV] C=1, gamma=0.01, kernel=sigmoid .................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.239203, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.277076, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.253165, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.267465, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.269513, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.241494, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.261015, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.261857, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.253173, total= 2.2min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] .. C=1, gamma=0.01, kernel=sigmoid, score=0.258690, total= 2.1min
[CV] C=1, gamma=0.001, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.514950, total= 2.5min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.519601, total= 2.6min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.486342, total= 2.5min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.514305, total= 2.6min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.511674, total= 2.6min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.521681, total= 2.6min
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.530040, total= 2.6min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.537074, total= 2.6min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.512358, total= 2.6min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=1, gamma=0.001, kernel=sigmoid, score=0.516711, total= 2.6min
[CV] C=10, gamma=0.01, kernel=sigmoid ................................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.235216, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.261477, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.274419, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.247835, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.266845, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.239493, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.255674, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.256513, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.254679, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
[LibSVM][CV] . C=10, gamma=0.01, kernel=sigmoid, score=0.256513, total= 2.1min
[CV] C=10, gamma=0.001, kernel=sigmoid ...............................
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.465116, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.471058, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.463123, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.452365, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.473649, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.471648, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.489987, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.482966, total= 2.0min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.471610, total= 2.1min
[LibSVM][CV] C=10, gamma=0.001, kernel=sigmoid, score=0.472594, total= 2.1min
[Parallel(n_jobs=10)]: Done 240 out of 240 | elapsed: 162.8min finished
[LibSVM]Total Time taken for cross validation and finding best parameters: 9906009.2649 ms
/net/voxel03/misc/me/praneethas/Softwares/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:220: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
% self.max_iter, ConvergenceWarning)