In [1]:
import pandas as pd;
df1 = pd.DataFrame({'HPI':[80,85,88,85],
'Int_rate':[2, 3, 2, 2],
'US_GDP_Thousands':[50, 55, 65, 55]},
index = [2001, 2002, 2003, 2004])
df2 = pd.DataFrame({'HPI':[80,85,88,85],
'Int_rate':[2, 3, 2, 2],
'US_GDP_Thousands':[50, 55, 65, 55]},
index = [2005, 2006, 2007, 2008])
df3 = pd.DataFrame({'HPI':[80,85,88,85],
'Int_rate':[2, 3, 2, 2],
'Low_tier_HPI':[50, 52, 50, 53]},
index = [2001, 2002, 2003, 2004])
In [12]:
print(pd.concat([df1, df2, df3])); #wow: NaNs
#concat[2001] will cause a error
In [13]:
print(pd.concat([df1, df2]));
In [16]:
df4 = df1.append(df2);
print(df4);
In [17]:
df5 = df4.append(df3);
print(df5); #similar to concatenation
In [20]:
s = pd.Series([80, 2, 50], index = ["HPI", "Int_rate", "US_GDP_Thousands"]);
df6 = df1.append(s, ignore_index = True);
print(df6);
In [ ]: