$\DeclareMathOperator{\ZZ}{\mathbb{Z}}$
$\DeclareMathOperator{\SS}{\mathbb{S}}$
$\DeclareMathOperator{\RP}{\mathbb{RP}}$
Let $N$ be another $R$-module.
Tensoring $N$ with $C_\bullet$, we get another chain complex
$$ \cdots \to N \otimes C_2 \to N \otimes C_1\to N \otimes C_0 \to 0.$$Taking the homology of this complex yields:
$$ \text{Tor}^R_n(N,M) := H_n(N \otimes_R C_{\bullet})$$The group homology of $G$ is $$ H_{\bullet}G := \text{Tor}^{\mathbb{Z}G}_{\bullet}(\ZZ,\ZZ)$$
which is the homology of the chain complex
$$ \cdots \to \ZZ \otimes_{\mathbb{Z}G} C_2 \to \ZZ \otimes_{\mathbb{Z}G} C_1 \to \ZZ \otimes_{\mathbb{Z}G} C_0 \to 0$$where
$$\cdots \to C_2 \to C_1 \to C_0 \to \mathbb{Z} \to 0$$is a projective resolution of $\mathbb{Z}$.
How do we get projective resolutions of $M = \mathbb{Z}$?
Why do we tensor with $N = \mathbb{Z}$?
Topology has the answers!
Lemma. If $S$ is a free $G$-set, then $\mathbb{Z}S$ is a free $\mathbb{Z}G$-module.
Proof. For $s \in S$, we have $$Gx \cong G/G_s.$$
Since $S$ is the disjoint union of its orbits and $$ \mathbb{Z}\left(\coprod S_i\right) = \oplus \mathbb{Z}S_i$$ we get $$ \mathbb{Z}S \cong \oplus\mathbb{Z}\left(G/G_s\right).$$
Since $G$ acts freely, $G_s = \{e\}$ so $G/G_s = G$ and $$\mathbb{Z}S \cong \oplus \mathbb{Z}G.$$
So we get a chain complex of free $G$-modules
$$ \cdots \to C_2 E \to C_1 E \to C_0 E \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$and if $E$ is contractible, $\tilde{H}_\bullet E = 0$, so this is exact.
We get a free resolution of $\mathbb{Z}$!
Lemma. For $S$ an arbitrary $G$-set,
$$\left(\mathbb{Z}S\right)_G \cong \mathbb{Z}(S/G).$$Proof. $(\mathbb{Z}S)_G \cong (\oplus \mathbb{Z}(G/G_s))_G \cong \oplus (\mathbb{Z}(G/G_s))_G \cong \oplus \mathbb{Z}(Gs) \cong \mathbb{Z}(S/G) $
Proposition. Let $X$ be a space with $\pi_1(X) = G$ and contractible universal cover $E$. Then
$$(S_n E)/G \cong S_n (E/G),$$and thus,
$$(C_\bullet E)_G \cong C_\bullet X.$$Proposition. $$M_G \cong \mathbb{Z} \otimes_{\mathbb{Z}G} M.$$
Proof. Note that $$ 1 \otimes g\cdot m = 1\cdot g \otimes m = 1 \otimes m $$ so the map $M \to \mathbb{Z}\otimes M, m \mapsto 1 \otimes m$ factors through $M_G$.
We also have a bilinear map $\mathbb{Z} \times M \to M_G, (a,m) \mapsto am$, yielding a map $\mathbb{Z} \otimes M \to M_G, a\otimes m \mapsto am$.
These maps are mutual inverses.
Putting it together...
Let $X$ be a path-connected space with $\pi_1(X) = G$ and contractible universal cover $E$.
Then $G$ acts freely on $E$, so we get a free resolution of $\ZZ$:
$$ \cdots \to C_1 E \to C_0 E \xrightarrow{\varepsilon} \ZZ \to 0,$$Tensoring $C_\bullet E$ with $\ZZ$ yields
$$\cdots \to \ZZ \otimes C_1 E \to \ZZ \otimes C_0 E \to 0,$$which is isomorphic to
$$\cdots \to C_1 X \to C_0 X \to 0.$$Taking homology, $$H_\bullet X \cong H_\bullet G.$$
Theorem. The homotopy type of a $K(G,1)$-complex is uniquely determined by $G$.
We could have thus defined:
$$H_\bullet G :=\, H_\bullet\, K(G,1)$$Proposition. [Hatcher, 1B.9]
Let $X$ be a connected CW-complex, $Y$ a $K(G,1)$-complex. Then every
$$\varphi: \pi_1(X,x_0) \to \pi_1(Y,y_0)$$is induced by
$$f: (X,x_0) \to (Y,y_0),$$and $f$ is unique up to homotopy (relative to $x_0$).