Train Model with CPU


In [ ]:
import tensorflow as tf
from tensorflow.python.client import timeline
import pylab
import numpy as np

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

tf.logging.set_verbosity(tf.logging.INFO)

In [ ]:
tf.reset_default_graph()

In [ ]:
num_samples = 100000

In [ ]:
from datetime import datetime 

version = int(datetime.now().strftime("%s"))
print(version)

In [ ]:
x_train = np.random.rand(num_samples).astype(np.float32)
print(x_train)

noise = np.random.normal(scale=0.01, size=len(x_train))

y_train = x_train * 0.1 + 0.3 + noise
print(y_train)

pylab.plot(x_train, y_train, '.')

Create Model Test/Validation Data


In [ ]:
x_test = np.random.rand(len(x_train)).astype(np.float32)
print(x_test)

noise = np.random.normal(scale=0.01, size=len(x_train))

y_test = x_test * 0.1 + 0.3 + noise
print(y_test)

pylab.plot(x_train, y_train, '.')

In [ ]:
with tf.device("/cpu:0"):
  W = tf.get_variable(shape=[], name='weights')
  print(W)

  b = tf.get_variable(shape=[], name='bias')
  print(b)

  x_observed = tf.placeholder(shape=[None], dtype=tf.float32, name='x_observed')
  print(x_observed)

with tf.device("/cpu:0"):
  y_pred = W * x_observed + b
  print(y_pred)

In [ ]:
with tf.device("/cpu:0"):

  y_observed = tf.placeholder(shape=[None], dtype=tf.float32, name='y_observed')
  print(y_observed)

  loss_op = tf.reduce_mean(tf.square(y_pred - y_observed))

  optimizer_op = tf.train.GradientDescentOptimizer(0.025)  
  train_op = optimizer_op.minimize(loss_op)  

  print("loss:", loss_op)
  print("optimizer:", optimizer_op)
  print("train:", train_op)

In [ ]:
with tf.device("/cpu:0"):
  init_op = tf.global_variables_initializer()
  print(init_op)

In [ ]:
train_summary_writer = tf.summary.FileWriter('/root/tensorboard/linear/cpu/%s/train' % version, graph=tf.get_default_graph())

test_summary_writer = tf.summary.FileWriter('/root/tensorboard/linear/cpu/%s/test' % version, graph=tf.get_default_graph())

In [ ]:
config = tf.ConfigProto(
  log_device_placement=True,
)
print(config)

sess = tf.Session(config=config)

In [ ]:
sess.run(init_op)
print(sess.run(W))
print(sess.run(b))

Look at the Model Graph In Tensorboard

Navigate to the Graph tab at this URL:

http://[ip-address]:6006

Accuracy of Random Weights


In [ ]:
def test(x, y):
  return sess.run(loss_op, feed_dict={x_observed: x, y_observed: y})

In [ ]:
test(x=x_test, y=y_test)

In [ ]:
loss_summary_scalar_op = tf.summary.scalar('loss', loss_op)
loss_summary_merge_all_op = tf.summary.merge_all()

Train Model


In [ ]:
%%time

max_steps = 400

run_metadata = tf.RunMetadata()

for step in range(max_steps):
  if (step < max_steps):
    test_summary_log, _ = sess.run([loss_summary_merge_all_op, loss_op], feed_dict={x_observed: x_test, y_observed: y_test})
    train_summary_log, _ = sess.run([loss_summary_merge_all_op, train_op], feed_dict={x_observed: x_train, y_observed: y_train})
  else:  
    test_summary_log, _ = sess.run([loss_summary_merge_all_op, loss_op], feed_dict={x_observed: x_test, y_observed: y_test})
    train_summary_log, _ = sess.run([loss_summary_merge_all_op, train_op], feed_dict={x_observed: x_train, y_observed: y_train}, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=run_metadata)
    trace = timeline.Timeline(step_stats=run_metadata.step_stats)    
    with open('cpu-timeline.json', 'w') as trace_file:
      trace_file.write(trace.generate_chrome_trace_format(show_memory=True))

  if step % 1 == 0:
    print(step, sess.run([W, b]))
    train_summary_writer.add_summary(train_summary_log, step)
    train_summary_writer.flush()
    test_summary_writer.add_summary(test_summary_log, step)
    test_summary_writer.flush()

In [ ]:
pylab.plot(x_train, y_train, '.', label="target")
pylab.plot(x_train, sess.run(y_pred, feed_dict={x_observed: x_train, y_observed: y_train}), ".", label="predicted")
pylab.legend()
pylab.ylim(0, 1.0)

In [ ]:
test(x=x_test, y=y_test)

Look at the Train and Test Loss Summary In Tensorboard

Navigate to the Scalars tab at this URL:

http://[ip-address]:6006


In [ ]:
from tensorflow.python.saved_model import utils

tensor_info_x_observed = utils.build_tensor_info(x_observed)
print(tensor_info_x_observed)

tensor_info_y_pred = utils.build_tensor_info(y_pred)
print(tensor_info_y_pred)

In [ ]:
export_path = "/root/models/linear/cpu/%s" % version
print(export_path)

In [ ]:
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import signature_def_utils
from tensorflow.python.saved_model import tag_constants

with tf.device("/cpu:0"):
  builder = saved_model_builder.SavedModelBuilder(export_path)

prediction_signature =  signature_def_utils.build_signature_def(
    inputs = {'x_observed': tensor_info_x_observed}, 
    outputs = {'y_pred': tensor_info_y_pred}, 
    method_name = signature_constants.PREDICT_METHOD_NAME)            

legacy_init_op = tf.group(tf.initialize_all_tables(), name='legacy_init_op')

builder.add_meta_graph_and_variables(sess, 
  [tag_constants.SERVING],
  signature_def_map={'predict':prediction_signature,
  signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:prediction_signature}, 
  legacy_init_op=legacy_init_op)

builder.save()

Look at the Model On Disk

You must replace [version] with the version number


In [ ]:
%%bash

ls -l /root/models/linear/cpu/[version]

HACK: Save Model in Previous Model Format

We will use this later.


In [ ]:
from tensorflow.python.framework import graph_io
graph_io.write_graph(sess.graph, "/root/models/optimize_me/", "unoptimized_cpu.pb")

In [ ]:
sess.close()