Ntlk book is here: http://www.nltk.org/book/
NLP applications: http://blog.mashape.com/list-of-25-natural-language-processing-apis/
In [1]:
    
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.corpus import wordnet
    
In [2]:
    
sentence = "The Quick brown fox, Jumps over the lazy little dog. Hello World."
    
In [3]:
    
sentence.split(" ")
    
    Out[3]:
In [4]:
    
word_tokenize(sentence)
    
    Out[4]:
In [5]:
    
w = word_tokenize(sentence)
nltk.pos_tag(w)
    
    Out[5]:
In [ ]:
    
# List of tages: http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
nltk.help.upenn_tagset()
    
In [10]:
    
syn = wordnet.synsets("computer")
print(syn)
print(syn[0].name())
print(syn[0].definition())
print(syn[1].name())
print(syn[1].definition())
    
    
In [11]:
    
syn = wordnet.synsets("talk")
syn[0].examples()
    
    Out[11]:
In [16]:
    
syn = wordnet.synsets("speak")[0]
print(syn.hypernyms())
print(syn.hyponyms())
    
    
In [24]:
    
syn = wordnet.synsets("good")
for s in syn:
    for l in s.lemmas():
        if (l.antonyms()):
            print(l.antonyms())
    
    
In [25]:
    
syn = wordnet.synsets("book")
for s in syn:
    print(s.lemmas())
    
    
In [ ]: