In [1]:
import numpy as np
%pylab inline
In [2]:
def AofT(time,T, ai, taui):
return ai*np.exp(-time/taui)/(1.+np.exp(-T/(2*taui)))
In [3]:
from SimPEG import *
import sys
sys.path.append("./DoubleLog/")
from plotting import mapDat
In [4]:
class LinearSurvey(Survey.BaseSurvey):
nD = None
def __init__(self, time, **kwargs):
self.time = time
self.nD = time.size
def projectFields(self, u):
return u
class LinearProblem(Problem.BaseProblem):
surveyPair = LinearSurvey
def __init__(self, mesh, G, **kwargs):
Problem.BaseProblem.__init__(self, mesh, **kwargs)
self.G = G
def fields(self, m, u=None):
return self.G.dot(m)
def Jvec(self, m, v, u=None):
return self.G.dot(v)
def Jtvec(self, m, v, u=None):
return self.G.T.dot(v)
In [11]:
# time = np.cumsum(np.r_[0., 1e-5*np.ones(10), 5e-5*np.ones(10), 1e-4*np.ones(10), 5e-4*np.ones(10), 1e-3*np.ones(10)])
time = np.cumsum(np.r_[0., 1e-5*np.ones(10), 5e-5*np.ones(10),1e-4*np.ones(10), 5e-4*np.ones(10)])
M = 41
tau = np.logspace(-5.1, -1, M)
In [12]:
N = time.size
A = np.zeros((N, M))
for j in range(M):
A[:,j] = np.exp(-time/tau[j])//tau[j]
In [13]:
mtrue = np.zeros(M)
In [14]:
np.random.seed(1)
inds = np.random.random_integers(0, 41, size=5)
mtrue[inds] = np.r_[-3, 2, 1, 4, 5]
In [15]:
out = np.dot(A,mtrue)
In [16]:
fig = plt.figure(figsize=(6,4.5))
ax = plt.subplot(111)
for i, ind in enumerate(inds):
temp, dum, dum = mapDat(mtrue[inds][i]*np.exp(-time/tau[ind])/tau[j], 1e-1, stretch=2)
plt.semilogx(time, temp, 'k', alpha = 0.5)
outmap, ticks, tickLabels = mapDat(out, 1e-1, stretch=2)
ax.semilogx(time, outmap, 'k', lw=2)
ax.set_yticks(ticks)
ax.set_yticklabels(tickLabels)
# ax.set_ylim(ticks.min(), ticks.max())
ax.set_ylim(ticks.min(), ticks.max())
ax.set_xlim(time.min(), time.max())
ax.grid(True)
In [159]:
# from pymatsolver import MumpsSolver
In [168]:
abs(survey.dobs).min()
Out[168]:
In [169]:
mesh = Mesh.TensorMesh([M])
prob = LinearProblem(mesh, A)
survey = LinearSurvey(time)
survey.pair(prob)
survey.makeSyntheticData(mtrue, std=0.01)
# survey.dobs = out
reg = Regularization.BaseRegularization(mesh)
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.Wd = 1./(0.05*abs(survey.dobs)+0.05*100.)
opt = Optimization.ProjectedGNCG(maxIter=20)
# opt = Optimization.InexactGaussNewton(maxIter=20)
opt.lower = -1e-10
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
invProb.beta = 1e-4
beta = Directives.BetaSchedule()
beta.coolingFactor = 2
target = Directives.TargetMisfit()
inv = Inversion.BaseInversion(invProb, directiveList=[beta, target])
m0 = np.zeros_like(survey.mtrue)
mrec = inv.run(m0)
In [170]:
plt.semilogx(tau, mtrue, '.')
plt.semilogx(tau, mrec, '.')
Out[170]:
In [171]:
fig = plt.figure(figsize=(6,4.5))
ax = plt.subplot(111)
obsmap, ticks, tickLabels = mapDat(survey.dobs, 1e0, stretch=2)
predmap, dum, dum = mapDat(invProb.dpred, 1e0, stretch=2)
ax.loglog(time, survey.dobs, 'k', lw=2)
ax.loglog(time, invProb.dpred, 'k.', lw=2)
# ax.set_yticks(ticks)
# ax.set_yticklabels(tickLabels)
# ax.set_ylim(ticks.min(), ticks.max())
# ax.set_ylim(ticks.min(), ticks.max())
ax.set_xlim(time.min(), time.max())
ax.grid(True)
In [172]:
time = np.cumsum(np.r_[0., 1e-5*np.ones(10), 5e-5*np.ones(10), 1e-4*np.ones(10), 5e-4*np.ones(10), 1e-3*np.ones(10)])
N = time.size
A = np.zeros((N, M))
for j in range(M):
A[:,j] = np.exp(-time/tau[j]) /tau[j]
In [173]:
mfund = mtrue.copy()
mfund[mfund<0.] = 0.
obs = np.dot(A, mtrue)
fund = np.dot(A, mfund)
pred = np.dot(A, mrec)
In [174]:
ip = obs-fund
ipobs = obs-pred
In [175]:
plt.loglog(time, obs, 'k.-', lw=2)
plt.loglog(time, -obs, 'k--', lw=2)
plt.loglog(time, fund, 'b.', lw=2)
plt.loglog(time, pred, 'b-', lw=2)
plt.loglog(time, -ip, 'r--', lw=2)
plt.loglog(time, abs(ipobs), 'r.', lw=2)
plt.ylim(abs(obs).min(), abs(obs).max())
plt.xlim(time.min(), time.max())
Out[175]:
In [ ]: