Facies classification using Convolutional Neural Networks

Team StoDIG - Statoil Deep-learning Interest Group

David Wade, John Thurmond & Eskil Kulseth Dahl

In this python notebook we propose a facies classification model, building on the simple Neural Network solution proposed by LA_Team in order to outperform the prediction model proposed in the predicting facies from well logs challenge.

Given the limited size of the training data set, Deep Learning is not likely to exceed the accuracy of results from refined Machine Learning techniques (such as Gradient Boosted Trees). However, we chose to use the opportunity to advance our understanding of Deep Learning network design, and have enjoyed participating in the contest. With a substantially larger training set and perhaps more facies ambiguity, Deep Learning could be a preferred approach to this sort of problem.

We use three key innovations:

  • Inserting a convolutional layer as the first layer in the Neural Network
  • Initializing the weights of this layer to detect gradients and extrema
  • Adding Dropout regularization to prevent overfitting

Since our submission #2 we have:

  • Added the distance to the next NM_M transition as a feature (thanks to geoLEARN where we spotted this)
  • Removed Recruit F9 from training

Problem Modeling


The dataset we will use comes from a class excercise from The University of Kansas on Neural Networks and Fuzzy Systems. This exercise is based on a consortium project to use machine learning techniques to create a reservoir model of the largest gas fields in North America, the Hugoton and Panoma Fields. For more info on the origin of the data, see Bohling and Dubois (2003) and Dubois et al. (2007).

The dataset we will use is log data from nine wells that have been labeled with a facies type based on oberservation of core. We will use this log data to train a classifier to predict facies types.

This data is from the Council Grove gas reservoir in Southwest Kansas. The Panoma Council Grove Field is predominantly a carbonate gas reservoir encompassing 2700 square miles in Southwestern Kansas. This dataset is from nine wells (with 4149 examples), consisting of a set of seven predictor variables and a rock facies (class) for each example vector and validation (test) data (830 examples from two wells) having the same seven predictor variables in the feature vector. Facies are based on examination of cores from nine wells taken vertically at half-foot intervals. Predictor variables include five from wireline log measurements and two geologic constraining variables that are derived from geologic knowledge. These are essentially continuous variables sampled at a half-foot sample rate.

The seven predictor variables are:

The nine discrete facies (classes of rocks) are:

  1. Nonmarine sandstone
  2. Nonmarine coarse siltstone
  3. Nonmarine fine siltstone
  4. Marine siltstone and shale
  5. Mudstone (limestone)
  6. Wackestone (limestone)
  7. Dolomite
  8. Packstone-grainstone (limestone)
  9. Phylloid-algal bafflestone (limestone)

These facies aren't discrete, and gradually blend into one another. Some have neighboring facies that are rather close. Mislabeling within these neighboring facies can be expected to occur. The following table lists the facies, their abbreviated labels and their approximate neighbors.

Facies Label Adjacent Facies
1 SS 2
2 CSiS 1,3
3 FSiS 2
4 SiSh 5
5 MS 4,6
6 WS 5,7
7 D 6,8
8 PS 6,7,9
9 BS 7,8

Setup


Check we have all the libraries we need, and import the modules we require. Note that we have used the Theano backend for Keras, and to achieve a reasonable training time we have used an NVidia K20 GPU.


In [1]:
%%sh
pip install pandas
pip install scikit-learn
pip install keras
pip install sklearn


Requirement already satisfied: pandas in /home/dawad/anaconda3/lib/python3.5/site-packages
Requirement already satisfied: python-dateutil>=2 in /home/dawad/anaconda3/lib/python3.5/site-packages (from pandas)
Requirement already satisfied: pytz>=2011k in /home/dawad/anaconda3/lib/python3.5/site-packages (from pandas)
Requirement already satisfied: numpy>=1.7.0 in /home/dawad/anaconda3/lib/python3.5/site-packages (from pandas)
Requirement already satisfied: six>=1.5 in /home/dawad/anaconda3/lib/python3.5/site-packages (from python-dateutil>=2->pandas)
Requirement already satisfied: scikit-learn in /home/dawad/anaconda3/lib/python3.5/site-packages
Requirement already satisfied: keras in /home/dawad/anaconda3/lib/python3.5/site-packages
Requirement already satisfied: theano in /home/dawad/anaconda3/lib/python3.5/site-packages (from keras)
Requirement already satisfied: six in /home/dawad/anaconda3/lib/python3.5/site-packages (from keras)
Requirement already satisfied: pyyaml in /home/dawad/anaconda3/lib/python3.5/site-packages (from keras)
Requirement already satisfied: numpy>=1.7.1 in /home/dawad/anaconda3/lib/python3.5/site-packages (from theano->keras)
Requirement already satisfied: scipy>=0.11 in /home/dawad/anaconda3/lib/python3.5/site-packages (from theano->keras)
Requirement already satisfied: sklearn in /home/dawad/anaconda3/lib/python3.5/site-packages
Requirement already satisfied: scikit-learn in /home/dawad/anaconda3/lib/python3.5/site-packages (from sklearn)

In [2]:
from __future__ import print_function
import time
import numpy as np
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from mpl_toolkits.axes_grid1 import make_axes_locatable
from keras.preprocessing import sequence
from keras.models import Model, Sequential
from keras.constraints import maxnorm, nonneg
from keras.optimizers import SGD, Adam, Adamax, Nadam
from keras.regularizers import l2, activity_l2
from keras.layers import Input, Dense, Dropout, Activation, Convolution1D, Cropping1D, Cropping2D, Permute, Flatten, MaxPooling1D, merge
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold , StratifiedKFold
from classification_utilities import display_cm, display_adj_cm
from sklearn.metrics import confusion_matrix, f1_score
from sklearn import preprocessing
from sklearn.model_selection import GridSearchCV


Using Theano backend.
Using gpu device 0: Tesla K20c (CNMeM is enabled with initial size: 80.0% of memory, cuDNN 5105)
/home/dawad/anaconda3/lib/python3.5/site-packages/theano/sandbox/cuda/__init__.py:600: UserWarning: Your cuDNN version is more recent than the one Theano officially supports. If you see any problems, try updating Theano or downgrading cuDNN to version 5.
  warnings.warn(warn)

Data ingest


We load the training and testing data to preprocess it for further analysis, filling the missing data values in the PE field with zero and proceeding to normalize the data that will be fed into our model. We now incorporate the Imputation from Paolo Bestagini via LA_Team's Submission 5.


In [3]:
data = pd.read_csv('train_test_data.csv')

# Set 'Well Name' and 'Formation' fields as categories
data['Well Name'] = data['Well Name'].astype('category')
data['Formation'] = data['Formation'].astype('category')

# Parameters
feature_names = ['Depth', 'GR', 'ILD_log10', 'DeltaPHI', 'PHIND', 'PE', 'NM_M', 'RELPOS']
facies_labels = ['SS', 'CSiS', 'FSiS', 'SiSh', 'MS','WS', 'D','PS', 'BS']
facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00', '#1B4F72','#2E86C1', '#AED6F1', '#A569BD', '#196F3D']
well_names_test = ['SHRIMPLIN', 'ALEXANDER D', 'SHANKLE', 'LUKE G U', 'KIMZEY A', 'CROSS H CATTLE', 'NOLAN', 'Recruit F9', 'NEWBY', 'CHURCHMAN BIBLE']
well_names_validate = ['STUART', 'CRAWFORD']

data_vectors = data[feature_names].values
correct_facies_labels = data['Facies'].values

nm_m = data['NM_M'].values
nm_m_dist = np.zeros((nm_m.shape[0],1), dtype=int)

for i in range(nm_m.shape[0]):
    count=1
    while (i+count<nm_m.shape[0]-1 and nm_m[i+count] == nm_m[i]):
        count = count+1
    nm_m_dist[i] = count
    
nm_m_dist.reshape(nm_m_dist.shape[0],1)


well_labels = data[['Well Name', 'Facies']].values
depth = data['Depth'].values

# Fill missing values and normalize for 'PE' field
imp = preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit(data_vectors)
data_vectors = imp.transform(data_vectors)

data_vectors = np.hstack([data_vectors, nm_m_dist])

scaler = preprocessing.StandardScaler().fit(data_vectors)
scaled_features = scaler.transform(data_vectors)
data_out = np.hstack([well_labels, scaled_features])

Split data into training data and blind data, and output as Numpy arrays


In [4]:
def preprocess(data_out):
    
    data = data_out
      
    X = data[0:4149,0:11]
    
    y = np.concatenate((data[0:4149,0].reshape(4149,1), np_utils.to_categorical(correct_facies_labels[0:4149]-1)), axis=1)
    X_test = data[4149:,0:11]

    return X, y, X_test

X_train_in, y_train, X_test_in = preprocess(data_out)

Data Augmentation


We expand the input data to be acted on by the convolutional layer.


In [5]:
conv_domain = 11

# Reproducibility
np.random.seed(7) 
# Load data

def expand_dims(input):
    r = int((conv_domain-1)/2)
    l = input.shape[0]
    n_input_vars = input.shape[1]
    output = np.zeros((l, conv_domain, n_input_vars))
    for i in range(l):
        for j in range(conv_domain):
            for k in range(n_input_vars):
                output[i,j,k] = input[min(i+j-r,l-1),k]
    return output

X_train = np.empty((0,conv_domain,9), dtype=float)
X_test  = np.empty((0,conv_domain,9), dtype=float)
y_select = np.empty((0,9), dtype=int)

well_names_train = ['SHRIMPLIN', 'ALEXANDER D', 'SHANKLE', 'LUKE G U', 'KIMZEY A', 'CROSS H CATTLE', 'NOLAN', 'NEWBY', 'CHURCHMAN BIBLE']

for wellId in well_names_train:
    X_train_subset = X_train_in[X_train_in[:, 0] == wellId][:,2:11]
    X_train_subset = expand_dims(X_train_subset)
    X_train = np.concatenate((X_train,X_train_subset),axis=0)
    y_select = np.concatenate((y_select, y_train[y_train[:, 0] == wellId][:,1:10]), axis=0)
    
for wellId in well_names_validate:
    X_test_subset = X_test_in[X_test_in[:, 0] == wellId][:,2:11]
    X_test_subset = expand_dims(X_test_subset)
    X_test = np.concatenate((X_test,X_test_subset),axis=0)

y_train = y_select
    
print(X_train.shape)
print(X_test.shape)
print(y_select.shape)


(4069, 11, 9)
(830, 11, 9)
(4069, 9)

Convolutional Neural Network

We build a CNN with the following layers (no longer using Sequential() model):

  • Dropout layer on input
  • One 1D convolutional layer (7-point radius)
  • One 1D cropping layer (just take actual log-value of interest)
  • Series of Merge layers re-adding result of cropping layer plus Dropout & Fully-Connected layers

Instead of running CNN with gradient features added, we initialize the Convolutional layer weights to achieve this

  • This allows the CNN to reject them, adjust them or turn them into something else if required

In [21]:
# Set parameters
input_dim = 9
output_dim = 9
n_per_batch = 128
epochs = 100
crop_factor = int(conv_domain/2)
filters_per_log = 11
n_convolutions = input_dim*filters_per_log

starting_weights = [np.zeros((conv_domain, 1, input_dim, n_convolutions)), np.ones((n_convolutions))]

norm_factor=float(conv_domain)*2.0


for i in range(input_dim):
    for j in range(conv_domain):
        starting_weights[0][j, 0, i, i*filters_per_log+0]  = j/norm_factor
        starting_weights[0][j, 0, i, i*filters_per_log+1]  = j/norm_factor
        starting_weights[0][j, 0, i, i*filters_per_log+2]  = (conv_domain-j)/norm_factor
        starting_weights[0][j, 0, i, i*filters_per_log+3]  = (conv_domain-j)/norm_factor
        starting_weights[0][j, 0, i, i*filters_per_log+4]  = (2*abs(crop_factor-j))/norm_factor
        starting_weights[0][j, 0, i, i*filters_per_log+5]  = (conv_domain-2*abs(crop_factor-j))/norm_factor
        starting_weights[0][j, 0, i, i*filters_per_log+6]  = 0.25
        starting_weights[0][j, 0, i, i*filters_per_log+7]  = 0.5  if (j%2 == 0) else 0.25
        starting_weights[0][j, 0, i, i*filters_per_log+8]  = 0.25 if (j%2 == 0) else 0.5
        starting_weights[0][j, 0, i, i*filters_per_log+9]  = 0.5  if (j%4 == 0) else 0.25
        starting_weights[0][j, 0, i, i*filters_per_log+10] = 0.25 if (j%4 == 0) else 0.5

def dnn_model(init_dropout_rate=0.375, main_dropout_rate=0.5,
              hidden_dim_1=20, hidden_dim_2=32, 
              max_norm=10, nb_conv=n_convolutions):
    # Define the model
    inputs = Input(shape=(conv_domain,input_dim,))
    inputs_dropout = Dropout(init_dropout_rate)(inputs)

    x1 = Convolution1D(nb_conv, conv_domain, border_mode='valid', weights=starting_weights, activation='tanh', input_shape=(conv_domain,input_dim), input_length=input_dim, W_constraint=nonneg())(inputs_dropout)
    x1 = Flatten()(x1)   

    xn = Cropping1D(cropping=(crop_factor,crop_factor))(inputs_dropout)
    xn = Flatten()(xn)

    xA = merge([x1, xn], mode='concat')    
    xA = Dropout(main_dropout_rate)(xA)
    xA = Dense(hidden_dim_1, init='uniform', activation='relu', W_constraint=maxnorm(max_norm))(xA)
    
    x = merge([xA, xn], mode='concat')    
    x = Dropout(main_dropout_rate)(x)
    x = Dense(hidden_dim_2, init='uniform', activation='relu', W_constraint=maxnorm(max_norm))(x)
    
    predictions = Dense(output_dim, init='uniform', activation='softmax')(x)
    
    model = Model(input=inputs, output=predictions)
    
    optimizerNadam = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
    model.compile(loss='categorical_crossentropy', optimizer=optimizerNadam, metrics=['accuracy'])
    return model

# Load the model
t0 = time.time()
model_dnn = dnn_model()
model_dnn.summary()
t1 = time.time()
print("Load time = %d" % (t1-t0) )

def plot_weights():
    layerID=2

    print(model_dnn.layers[layerID].get_weights()[0].shape)
    print(model_dnn.layers[layerID].get_weights()[1].shape)

    fig, ax = plt.subplots(figsize=(12,10))

    for i in range(9):
        plt.subplot(911+i)
        plt.imshow(model_dnn.layers[layerID].get_weights()[0][:,0,i,:], interpolation='none')

    plt.show()
    
plot_weights()


____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_8 (InputLayer)             (None, 11, 9)         0                                            
____________________________________________________________________________________________________
dropout_22 (Dropout)             (None, 11, 9)         0           input_8[0][0]                    
____________________________________________________________________________________________________
convolution1d_8 (Convolution1D)  (None, 1, 99)         9900        dropout_22[0][0]                 
____________________________________________________________________________________________________
cropping1d_8 (Cropping1D)        (None, 1, 9)          0           dropout_22[0][0]                 
____________________________________________________________________________________________________
flatten_15 (Flatten)             (None, 99)            0           convolution1d_8[0][0]            
____________________________________________________________________________________________________
flatten_16 (Flatten)             (None, 9)             0           cropping1d_8[0][0]               
____________________________________________________________________________________________________
merge_15 (Merge)                 (None, 108)           0           flatten_15[0][0]                 
                                                                   flatten_16[0][0]                 
____________________________________________________________________________________________________
dropout_23 (Dropout)             (None, 108)           0           merge_15[0][0]                   
____________________________________________________________________________________________________
dense_22 (Dense)                 (None, 20)            2180        dropout_23[0][0]                 
____________________________________________________________________________________________________
merge_16 (Merge)                 (None, 29)            0           dense_22[0][0]                   
                                                                   flatten_16[0][0]                 
____________________________________________________________________________________________________
dropout_24 (Dropout)             (None, 29)            0           merge_16[0][0]                   
____________________________________________________________________________________________________
dense_23 (Dense)                 (None, 32)            960         dropout_24[0][0]                 
____________________________________________________________________________________________________
dense_24 (Dense)                 (None, 9)             297         dense_23[0][0]                   
====================================================================================================
Total params: 13,337
Trainable params: 13,337
Non-trainable params: 0
____________________________________________________________________________________________________
Load time = 0
(11, 1, 9, 99)
(99,)

We train the CNN and evaluate it on precision/recall.


In [22]:
#Train model
t0 = time.time()
model_dnn.fit(X_train, y_train, batch_size=n_per_batch, nb_epoch=epochs, verbose=0)
t1 = time.time()
print("Train time = %d seconds" % (t1-t0) )


# Predict Values on Training set
t0 = time.time()
y_predicted = model_dnn.predict( X_train , batch_size=n_per_batch, verbose=2)
t1 = time.time()
print("Test time = %d seconds" % (t1-t0) )

# Print Report

# Format output [0 - 8 ]
y_ = np.zeros((len(y_train),1))
for i in range(len(y_train)):
    y_[i] = np.argmax(y_train[i])

y_predicted_ = np.zeros((len(y_predicted), 1))
for i in range(len(y_predicted)):
    y_predicted_[i] = np.argmax( y_predicted[i] )
    
# Confusion Matrix
conf = confusion_matrix(y_, y_predicted_)

def accuracy(conf):
    total_correct = 0.
    nb_classes = conf.shape[0]
    for i in np.arange(0,nb_classes):
        total_correct += conf[i][i]
    acc = total_correct/sum(sum(conf))
    return acc

adjacent_facies = np.array([[1], [0,2], [1], [4], [3,5], [4,6,7], [5,7], [5,6,8], [6,7]])

def accuracy_adjacent(conf, adjacent_facies):
    nb_classes = conf.shape[0]
    total_correct = 0.
    for i in np.arange(0,nb_classes):
        total_correct += conf[i][i]
        for j in adjacent_facies[i]:
            total_correct += conf[i][j]
    return total_correct / sum(sum(conf))

# Print Results
print ("\nModel Report")
print ("-Accuracy: %.6f" % ( accuracy(conf) ))
print ("-Adjacent Accuracy: %.6f" % ( accuracy_adjacent(conf, adjacent_facies) ))
print ("\nConfusion Matrix")
display_cm(conf, facies_labels, display_metrics=True, hide_zeros=True)


Train time = 21 seconds
Test time = 1 seconds

Model Report
-Accuracy: 0.664537
-Adjacent Accuracy: 0.928975

Confusion Matrix
     Pred    SS  CSiS  FSiS  SiSh    MS    WS     D    PS    BS Total
     True
       SS   218    44     6                                       268
     CSiS    73   678   188                             1         940
     FSiS     5   200   563     4           1           7         780
     SiSh           3     3   221          37     1     6         271
       MS           5    10    74     6   118     5    78         296
       WS                 2    60     1   372    13   134         582
        D                 1    15           7    86    32         141
       PS                10    19         139     5   508     5   686
       BS           3                       7          43    52   105

Precision  0.74  0.73  0.72  0.56  0.86  0.55  0.78  0.63  0.91  0.69
   Recall  0.81  0.72  0.72  0.82  0.02  0.64  0.61  0.74  0.50  0.66
       F1  0.77  0.72  0.72  0.67  0.04  0.59  0.69  0.68  0.64  0.64

We display the learned 1D convolution kernels


In [23]:
plot_weights()


(11, 1, 9, 99)
(99,)

In order to avoid overfitting, we evaluate our model by running a 5-fold stratified cross-validation routine.


In [9]:
# Cross Validation
def cross_validate():
    t0 = time.time()
    estimator = KerasClassifier(build_fn=dnn_model, nb_epoch=epochs, batch_size=n_per_batch, verbose=0)
    skf = StratifiedKFold(n_splits=5, shuffle=True)
    results_dnn = cross_val_score(estimator, X_train, y_train, cv= skf.get_n_splits(X_train, y_train))
    t1 = time.time()
    print("Cross Validation time = %d" % (t1-t0) )
    print(' Cross Validation Results')
    print( results_dnn )
    print(np.mean(results_dnn))

cross_validate()


Cross Validation time = 108
 Cross Validation Results
[ 0.59459459  0.56388206  0.56879607  0.4987715   0.44895449]
0.534999743751

Prediction


To predict the STUART and CRAWFORD blind wells we do the following:

Set up a plotting function to display the logs & facies.


In [15]:
# 1=sandstone  2=c_siltstone   3=f_siltstone 
# 4=marine_silt_shale 5=mudstone 6=wackestone 7=dolomite
# 8=packstone 9=bafflestone
facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00', '#1B4F72','#2E86C1', '#AED6F1', '#A569BD', '#196F3D']

#facies_color_map is a dictionary that maps facies labels
#to their respective colors
facies_color_map = {}
for ind, label in enumerate(facies_labels):
    facies_color_map[label] = facies_colors[ind]

def label_facies(row, labels):
    return labels[ row['Facies'] -1]

def make_facies_log_plot(logs, facies_colors):
    #make sure logs are sorted by depth
    logs = logs.sort_values(by='Depth')
    cmap_facies = colors.ListedColormap(
            facies_colors[0:len(facies_colors)], 'indexed')
    
    ztop=logs.Depth.min(); zbot=logs.Depth.max()
    
    cluster=np.repeat(np.expand_dims(logs['Facies'].values,1), 100, 1)
    
    f, ax = plt.subplots(nrows=1, ncols=6, figsize=(8, 12))
    ax[0].plot(logs.GR, logs.Depth, '-g')
    ax[1].plot(logs.ILD_log10, logs.Depth, '-')
    ax[2].plot(logs.DeltaPHI, logs.Depth, '-', color='0.5')
    ax[3].plot(logs.PHIND, logs.Depth, '-', color='r')
    ax[4].plot(logs.PE, logs.Depth, '-', color='black')
    im=ax[5].imshow(cluster, interpolation='none', aspect='auto',
                    cmap=cmap_facies,vmin=1,vmax=9)
    
    divider = make_axes_locatable(ax[5])
    cax = divider.append_axes("right", size="20%", pad=0.05)
    cbar=plt.colorbar(im, cax=cax)
    cbar.set_label((17*' ').join([' SS ', 'CSiS', 'FSiS', 
                                'SiSh', ' MS ', ' WS ', ' D  ', 
                                ' PS ', ' BS ']))
    cbar.set_ticks(range(0,1)); cbar.set_ticklabels('')
    
    for i in range(len(ax)-1):
        ax[i].set_ylim(ztop,zbot)
        ax[i].invert_yaxis()
        ax[i].grid()
        ax[i].locator_params(axis='x', nbins=3)
    
    ax[0].set_xlabel("GR")
    ax[0].set_xlim(logs.GR.min(),logs.GR.max())
    ax[1].set_xlabel("ILD_log10")
    ax[1].set_xlim(logs.ILD_log10.min(),logs.ILD_log10.max())
    ax[2].set_xlabel("DeltaPHI")
    ax[2].set_xlim(logs.DeltaPHI.min(),logs.DeltaPHI.max())
    ax[3].set_xlabel("PHIND")
    ax[3].set_xlim(logs.PHIND.min(),logs.PHIND.max())
    ax[4].set_xlabel("PE")
    ax[4].set_xlim(logs.PE.min(),logs.PE.max())
    ax[5].set_xlabel('Facies')
    
    ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([])
    ax[4].set_yticklabels([]); ax[5].set_yticklabels([])
    ax[5].set_xticklabels([])
    f.suptitle('Well: %s'%logs.iloc[0]['Well Name'], fontsize=14,y=0.94)

Run the model on the blind data

  • Output a CSV
  • Plot the wells in the notebook

In [24]:
# DNN model Prediction
y_test = model_dnn.predict( X_test , batch_size=n_per_batch, verbose=0)
predictions_dnn = np.zeros((len(y_test),1))
for i in range(len(y_test)):
    predictions_dnn[i] = np.argmax(y_test[i]) + 1 
predictions_dnn = predictions_dnn.astype(int)
# Store results
test_data = pd.read_csv('../validation_data_nofacies.csv')
test_data['Facies'] = predictions_dnn
test_data.to_csv('Prediction_StoDIG_3.csv')

for wellId in well_names_validate:
    make_facies_log_plot( test_data[test_data['Well Name'] == wellId], facies_colors=facies_colors)