In [ ]:
%matplotlib inline
Holger Nahrstaedt 2020 Sigurd Carlsen October 2019
.. currentmodule:: skopt
When doing baysian optimization we often want to reserve some of the early part of the optimization to pure exploration. By default the optimizer suggests purely random samples for the first n_initial_points (10 by default). The downside to this is that there is no guarantee that these samples are spread out evenly across all the dimensions.
Sampling methods as Latin hypercube, Sobol, Halton and Hammersly take advantage of the fact that we know beforehand how many random points we want to sample. Then these points can be "spread out" in such a way that each dimension is explored.
See also the example on a real space
sphx_glr_auto_examples_initial_sampling_method.py
In [ ]:
print(__doc__)
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
from skopt.space import Space
from skopt.sampler import Sobol
from skopt.sampler import Lhs
from skopt.sampler import Halton
from skopt.sampler import Hammersly
from skopt.sampler import Grid
from scipy.spatial.distance import pdist
In [ ]:
def plot_searchspace(x, title):
fig, ax = plt.subplots()
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', label='samples')
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bs', markersize=40, alpha=0.5)
# ax.legend(loc="best", numpoints=1)
ax.set_xlabel("X1")
ax.set_xlim([0, 5])
ax.set_ylabel("X2")
ax.set_ylim([0, 5])
plt.title(title)
ax.grid(True)
n_samples = 10
space = Space([(0, 5), (0, 5)])
In [ ]:
x = space.rvs(n_samples)
plot_searchspace(x, "Random samples")
pdist_data = []
x_label = []
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("random")
In [ ]:
sobol = Sobol()
x = sobol.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Sobol')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("sobol")
In [ ]:
lhs = Lhs(lhs_type="classic", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'classic LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("lhs")
In [ ]:
lhs = Lhs(lhs_type="centered", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'centered LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("center")
In [ ]:
lhs = Lhs(criterion="maximin", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'maximin LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("maximin")
In [ ]:
lhs = Lhs(criterion="correlation", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'correlation LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("corr")
In [ ]:
lhs = Lhs(criterion="ratio", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'ratio LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("ratio")
In [ ]:
halton = Halton()
x = halton.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Halton')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("halton")
In [ ]:
hammersly = Hammersly()
x = hammersly.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Hammersly')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("hammersly")
In [ ]:
grid = Grid(border="include", use_full_layout=False)
x = grid.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Grid')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("grid")
In [ ]:
fig, ax = plt.subplots()
ax.boxplot(pdist_data)
plt.grid(True)
plt.ylabel("pdist")
_ = ax.set_ylim(0, 6)
_ = ax.set_xticklabels(x_label, rotation=45, fontsize=8)