In [1]:
import matplotlib.pyplot as plt
%matplotlib inline
import nengo
import numpy as np
import scipy.ndimage
from scipy.ndimage.interpolation import rotate
import matplotlib.animation as animation
from matplotlib import pylab
from PIL import Image
import nengo.spa as spa
import cPickle
import random
from nengo_extras.data import load_mnist
from nengo_extras.vision import Gabor, Mask
from skimage.measure import compare_ssim as ssim
Load the MNIST training and testing images
In [2]:
# --- load the data
img_rows, img_cols = 28, 28
(X_train, y_train), (X_test, y_test) = load_mnist()
X_train = 2 * X_train - 1 # normalize to -1 to 1
X_test = 2 * X_test - 1 # normalize to -1 to 1
In [10]:
random.seed(1)
'''Didn't work
n_imgs = len(X_train)
imgs = np.ndarray((n_imgs+1000,784*2))
for i in range(n_imgs):
imgs[i] = np.append(X_train[i],scipy.ndimage.interpolation.rotate(np.reshape(X_train[i],(28,28)),
random.randint(1,360),reshape=False,mode="nearest").ravel())
#Add some examples with no rotation
for i in range(1000):
imgs[n_imgs+i] = np.append(X_train[i],X_train[i])
#List of calculated similarities
similarities = np.ndarray((len(imgs),1))
for i in range(len(imgs)):
similarities[i] = ssim(imgs[i][:28**2].reshape(28,28),imgs[i][28**2:].reshape(28,28))
'''
#List of images
imgs = X_train.copy()
#Rotated images
rot_imgs = X_train.copy()
for img in rot_imgs:
img[:] = scipy.ndimage.interpolation.rotate(np.reshape(img,(28,28)),
random.randint(1,360),reshape=False,mode="nearest").ravel()
#List of calculated similarities
similarities = np.ndarray((len(imgs),1))
for i in range(len(imgs)):
similarities[i] = ssim(imgs[i].reshape(28,28),rot_imgs[i].reshape(28,28))
#Remove negative values, doesn't really change output
#similarities[similarities<0]=0
In [36]:
#Check to see if images and similarity generated correctly
index = np.random.randint(1,60000)
plt.subplot(121)
plt.imshow(np.reshape(imgs[index],(28,28)),cmap="gray")
plt.subplot(122)
plt.imshow(np.reshape(rot_imgs[index],(28,28)),cmap="gray")
#plt.imshow(np.reshape(imgs[index],(28*2,28)),cmap="gray")
#similarity = ssim(imgs[index][:28**2].reshape(28,28),imgs[index][28**2:].reshape(28,28))
similarity = similarities[index]
print(similarity)
In [37]:
rng = np.random.RandomState(9)
# --- set up network parameters
#Want to map from images to similarity
n_vis = X_train.shape[1] #imgs.shape[1]
n_out = similarities.shape[1]
#number of neurons/dimensions of semantic pointer
n_hid = 1000 #Try with more neurons for more accuracy
#Want the encoding/decoding done on the training images
ens_params = dict(
eval_points=X_train, #imgs,
neuron_type=nengo.LIF(), #originally used LIFRate()
intercepts=nengo.dists.Choice([-0.5]),
max_rates=nengo.dists.Choice([100]),
)
#Least-squares solver with L2 regularization.
solver = nengo.solvers.LstsqL2(reg=0.01)
#solver = nengo.solvers.LstsqL2(reg=0.0001)
#network that generates the weight matrices between neuron activity and images and the labels
with nengo.Network(seed=3) as model:
a = nengo.Ensemble(n_hid, n_vis, seed=3, **ens_params)
v = nengo.Node(size_in=n_out)
conn = nengo.Connection(
a, v, synapse=None,
eval_points=imgs, function=similarities,#want the similarities out
solver=solver)
# linear filter used for edge detection as encoders, more plausible for human visual system
encoders = Gabor().generate(n_hid, (11, 11), rng=rng)
encoders = Mask((28, 28)).populate(encoders, rng=rng, flatten=True)
#Set the ensembles encoders to this
a.encoders = encoders
#Check the encoders were correctly made
plt.imshow(encoders[0].reshape(28, 28), vmin=encoders[0].min(), vmax=encoders[0].max(), cmap='gray')
Out[37]:
In [38]:
#Get the neuron activity of an image or group of images (this is the semantic pointer in this case)
def get_activities(sim, images):
_, acts = nengo.utils.ensemble.tuning_curves(a, sim, inputs=images)
return acts
#Get similarity of activity using dot product
def get_dots(imgs):
dots = np.ndarray((60000,1))
for i in range(len(imgs)):
dots[i] = np.dot(imgs[i][:1000],imgs[i][1000:])
return dots
In [39]:
with nengo.Simulator(model) as sim:
#Neuron activities of different mnist image pairs
orig_acts = get_activities(sim,imgs)
rot_acts = get_activities(sim,rot_imgs)
acts = np.ndarray((orig_acts.shape[0],orig_acts.shape[1]*2))
for i in range(len(acts)):
acts[i] = np.append(orig_acts[i],rot_acts[i])
dot_similarities = get_dots(acts)
#solvers for a learning rule
solver = nengo.solvers.LstsqL2(reg=1e-8)
solver_ssim = nengo.solvers.LstsqL2(reg=1e-8)
#find weight matrix between neuron activity of the original image pair and the dot product of activities
#weights returns a tuple including information about learning process, just want the weight matrix
weights,_ = solver(acts, dot_similarities)
weights_ssim,_ = solver_ssim(acts,similarities)
Testing the outputs
In [55]:
test1 = X_test[random.randint(1,10000)]
test2 = scipy.ndimage.interpolation.rotate(np.reshape(test1,(28,28)),
random.randint(0,0),reshape=False,mode="nearest").ravel()
pylab.subplot(121)
pylab.imshow(test1.reshape(28,28),cmap='gray')
pylab.subplot(122)
pylab.imshow(test2.reshape(28,28),cmap='gray')
_,act1 = nengo.utils.ensemble.tuning_curves(a, sim, inputs=test1)
_,act2 = nengo.utils.ensemble.tuning_curves(a, sim, inputs=test2)
act = np.append(act1,act2)
print(np.dot(act,weights))
print(np.dot(act,weights_ssim))
In [56]:
#filename = "two_img_similarity_dot_weights" + str(n_hid*2) +".p"
#cPickle.dump(weights.T, open( filename, "wb" ) )
filename = "two_img_similarity_ssim_weights2" + str(n_hid*2) +".p"
cPickle.dump(weights_ssim.T, open( filename, "wb" ) )