In [1]:
import tensorflow as tf
In [2]:
a = tf.constant(1.5)
b = tf.constant(2, dtype=tf.float32)
In [3]:
a
Out[3]:
In [4]:
b
Out[4]:
In [5]:
c = a + b
In [6]:
c
Out[6]:
In [8]:
with tf.Session() as session:
res = session.run(c)
res2 = a.eval()
print(res)
print(res2)
In [9]:
state = tf.Variable(0)
one = tf.constant(1)
update = tf.assign(state, state + one)
In [10]:
with tf.Session() as session:
# It is mandatory to initialize variables before we start running the graph
session.run(tf.global_variables_initializer())
print(session.run(state))
for ind in range(5):
session.run(update)
print(session.run(state))
In [11]:
input_data = tf.placeholder(tf.float32)
In [12]:
op = tf.matmul(input_data, tf.transpose(input_data))
In [13]:
with tf.Session() as session:
res = session.run(op, feed_dict={input_data: [[0, 1, 2, 3]]})
print(res)
In [ ]: