Fitting 10 folds for each of 30 candidates, totalling 300 fits
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.666631, total= 12.8s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 15.0s remaining: 0.0s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.662346, total= 12.9s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 30.2s remaining: 0.0s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.654345, total= 12.8s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.663999, total= 12.8s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.660588, total= 12.2s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.659413, total= 12.3s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.662374, total= 12.1s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.653367, total= 12.3s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.661986, total= 12.8s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=50, score=0.664318, total= 12.7s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.667977, total= 24.8s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.669225, total= 24.2s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.663436, total= 24.4s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.666844, total= 24.7s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.664641, total= 24.5s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.664548, total= 24.9s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.668228, total= 24.5s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.659651, total= 23.3s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.665133, total= 23.4s
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=1, n_estimators=100, score=0.668154, total= 27.4s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.692674, total= 13.4s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.696114, total= 13.9s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.685529, total= 13.3s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.694882, total= 13.0s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.689659, total= 12.0s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.693180, total= 12.2s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.689121, total= 11.9s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.687010, total= 12.2s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.692253, total= 12.1s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50 ...........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=50, score=0.690586, total= 12.0s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.691629, total= 22.9s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.695212, total= 23.0s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.687300, total= 22.8s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.696874, total= 23.1s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.690774, total= 23.0s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.690841, total= 21.5s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.690620, total= 21.3s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.685525, total= 21.3s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.692362, total= 22.1s
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100 ..........
[CV] max_features=0.2, min_samples_leaf=5, n_estimators=100, score=0.690668, total= 22.4s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.692118, total= 11.3s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.693815, total= 11.3s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.682205, total= 11.0s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.694467, total= 11.2s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.689959, total= 11.2s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.692199, total= 11.3s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.689301, total= 11.0s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.687370, total= 11.0s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.686790, total= 11.0s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=50, score=0.690208, total= 11.1s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.691316, total= 21.2s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.694139, total= 21.2s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.682364, total= 21.2s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.697410, total= 21.5s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.690258, total= 21.0s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.691985, total= 21.3s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.690051, total= 20.1s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.684269, total= 20.0s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.689323, total= 20.1s
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=10, n_estimators=100, score=0.692834, total= 20.3s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.680299, total= 9.3s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.681666, total= 9.2s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.669693, total= 9.3s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.685892, total= 9.3s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.679000, total= 9.2s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.681488, total= 9.2s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.679586, total= 9.1s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.674875, total= 9.4s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.671800, total= 9.3s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50 ..........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=50, score=0.678400, total= 9.1s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.679835, total= 17.5s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.684237, total= 17.4s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.671817, total= 17.4s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.685309, total= 17.3s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.680435, total= 17.4s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.681511, total= 17.2s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.678700, total= 17.6s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.675334, total= 17.4s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.674762, total= 17.5s
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100 .........
[CV] max_features=0.2, min_samples_leaf=50, n_estimators=100, score=0.680127, total= 17.1s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.672168, total= 8.3s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.675879, total= 8.5s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.663309, total= 8.2s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.678086, total= 8.4s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.674120, total= 8.0s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.674442, total= 8.0s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.672260, total= 7.8s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.669740, total= 7.8s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.666465, total= 8.0s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50 .........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=50, score=0.670716, total= 7.8s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.674741, total= 14.7s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.677191, total= 14.7s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.665628, total= 15.5s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.680328, total= 15.5s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.673725, total= 15.7s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.674884, total= 15.5s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.671123, total= 15.6s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.671917, total= 15.7s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.669254, total= 15.7s
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100 ........
[CV] max_features=0.2, min_samples_leaf=100, n_estimators=100, score=0.673753, total= 15.6s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.658801, total= 9.6s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.659060, total= 9.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.649992, total= 9.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.659136, total= 9.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.649749, total= 9.8s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.652311, total= 9.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.654951, total= 9.8s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.644762, total= 9.8s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.656255, total= 9.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=50, score=0.653676, total= 9.6s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.662417, total= 18.5s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.662935, total= 18.5s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.656037, total= 18.3s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.659818, total= 18.3s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.655685, total= 18.4s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.659055, total= 17.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.660911, total= 17.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.649834, total= 17.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.659755, total= 17.7s
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=1, n_estimators=100, score=0.660628, total= 18.4s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.690823, total= 7.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.692218, total= 7.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.681533, total= 7.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.695001, total= 8.0s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.685654, total= 7.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.686418, total= 8.2s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.688447, total= 7.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.680116, total= 8.0s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.683318, total= 8.0s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=50, score=0.684941, total= 8.0s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.691220, total= 14.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.694393, total= 14.7s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.679268, total= 15.1s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.693581, total= 14.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.688082, total= 15.1s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.686561, total= 14.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.688691, total= 15.0s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.681451, total= 14.9s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.685764, total= 15.1s
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=auto, min_samples_leaf=5, n_estimators=100, score=0.688860, total= 15.0s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.689544, total= 7.5s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.687932, total= 7.5s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.677385, total= 7.4s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.690156, total= 7.4s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.687802, total= 7.6s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.684715, total= 7.4s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.682442, total= 7.4s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.679482, total= 7.5s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.682193, total= 7.5s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=50, score=0.683510, total= 7.6s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.684546, total= 14.1s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.691461, total= 13.8s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.678830, total= 13.4s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.689271, total= 13.5s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.685884, total= 13.4s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.683735, total= 13.4s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.684622, total= 13.5s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.679957, total= 13.6s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.681488, total= 13.9s
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=10, n_estimators=100, score=0.684064, total= 13.9s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.673127, total= 6.2s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.674274, total= 6.1s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.664635, total= 6.3s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.676645, total= 6.3s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.668052, total= 6.3s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.673197, total= 6.1s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.671520, total= 6.3s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.666191, total= 6.2s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.666938, total= 6.1s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=50, score=0.670619, total= 6.3s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.672717, total= 11.4s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.679101, total= 11.4s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.665086, total= 11.5s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.680066, total= 11.6s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.671416, total= 11.4s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.673085, total= 11.5s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.671877, total= 11.3s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.667577, total= 11.4s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.669507, total= 11.5s
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=auto, min_samples_leaf=50, n_estimators=100, score=0.669924, total= 11.4s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.664832, total= 5.7s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.666125, total= 5.8s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.657515, total= 5.7s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.673370, total= 5.7s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.662684, total= 5.7s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.662170, total= 5.5s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.663197, total= 5.7s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.660698, total= 5.7s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.658432, total= 5.7s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=auto, min_samples_leaf=100, n_estimators=50, score=0.664916, total= 5.6s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.666565, total= 10.3s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.669438, total= 10.2s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.658173, total= 10.4s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.671259, total= 10.4s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.665417, total= 10.5s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.666330, total= 10.3s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.661362, total= 10.6s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.659330, total= 10.4s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.659032, total= 10.3s
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=auto, min_samples_leaf=100, n_estimators=100, score=0.662671, total= 10.3s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.652100, total= 9.0s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.656628, total= 9.1s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.646728, total= 8.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.654046, total= 8.5s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.650351, total= 8.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.648565, total= 8.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.648034, total= 8.7s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.642593, total= 8.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.653301, total= 8.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=50, score=0.649713, total= 8.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.659262, total= 16.3s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.657553, total= 16.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.650333, total= 16.5s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.656775, total= 16.6s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.655385, total= 16.6s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.654120, total= 16.5s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.656832, total= 16.4s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.643297, total= 16.5s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.656975, total= 16.6s
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=1, n_estimators=100, score=0.656257, total= 16.3s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.686200, total= 6.8s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.690212, total= 6.7s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.677388, total= 6.8s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.690217, total= 7.0s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.683490, total= 6.9s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.684471, total= 6.9s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.684774, total= 6.9s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.679959, total= 6.9s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.681168, total= 6.8s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50 ..........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=50, score=0.685200, total= 6.9s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.686811, total= 12.7s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.693200, total= 12.7s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.679333, total= 12.8s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.687601, total= 12.7s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.684832, total= 12.6s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.682786, total= 12.7s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.686439, total= 12.6s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.680193, total= 12.7s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.682441, total= 12.9s
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100 .........
[CV] max_features=log2, min_samples_leaf=5, n_estimators=100, score=0.684860, total= 12.8s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.681667, total= 6.3s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.685196, total= 6.4s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.673259, total= 6.3s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.685642, total= 6.4s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.682731, total= 6.3s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.678443, total= 6.2s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.683293, total= 6.4s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.673057, total= 6.3s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.676964, total= 6.1s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=50, score=0.679843, total= 6.1s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.681262, total= 11.3s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.687383, total= 11.5s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.674064, total= 11.6s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.684343, total= 11.3s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.680402, total= 11.4s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.680933, total= 11.3s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.678437, total= 11.6s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.675079, total= 11.8s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.676820, total= 11.8s
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=10, n_estimators=100, score=0.680521, total= 11.7s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.669506, total= 5.5s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.675879, total= 5.2s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.657820, total= 5.3s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.674400, total= 5.3s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.664675, total= 5.3s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.667477, total= 5.4s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.667142, total= 5.3s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.661198, total= 5.4s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.663466, total= 5.3s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50 .........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=50, score=0.666565, total= 5.3s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.669411, total= 9.6s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.673615, total= 9.7s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.662535, total= 9.6s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.676418, total= 9.6s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.665182, total= 9.6s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.666835, total= 9.7s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.669683, total= 9.5s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.662029, total= 9.6s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.663114, total= 9.8s
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100 ........
[CV] max_features=log2, min_samples_leaf=50, n_estimators=100, score=0.668349, total= 9.4s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.664936, total= 4.7s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.668059, total= 4.8s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.656568, total= 4.8s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.668589, total= 4.8s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.657034, total= 4.7s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.659690, total= 4.9s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.658688, total= 4.7s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.651598, total= 4.8s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.658742, total= 4.9s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50 ........
[CV] max_features=log2, min_samples_leaf=100, n_estimators=50, score=0.659360, total= 4.8s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.663526, total= 8.8s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.666463, total= 8.6s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.656867, total= 8.6s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.667582, total= 8.6s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.660972, total= 8.7s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.661409, total= 8.6s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.657826, total= 8.7s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.653651, total= 8.6s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.656847, total= 8.5s
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100 .......
[CV] max_features=log2, min_samples_leaf=100, n_estimators=100, score=0.659686, total= 8.6s
[Parallel(n_jobs=1)]: Done 300 out of 300 | elapsed: 68.5min finished
Out[40]:
GridSearchCV(cv=10, error_score='raise',
estimator=RandomForestClassifier(bootstrap=True, class_weight='balanced',
criterion='gini', max_depth=None, max_features='auto',
max_leaf_nodes=None, min_impurity_split=1e-07,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=4,
oob_score=False, random_state=None, verbose=0,
warm_start=False),
fit_params={}, iid=True, n_jobs=1,
param_grid={'max_features': [0.2, 'auto', 'log2'], 'n_estimators': [50, 100], 'min_samples_leaf': [1, 5, 10, 50, 100]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring='f1', verbose=3)