In [1]:
%autosave 0
In [2]:
from suneku import hello
from suneku.classifier import LogisticClassifier, traintest
hello(LogisticClassifier)
In [3]:
demo = LogisticClassifier.demo()
print(demo)
In [4]:
demo.data.head()
Out[4]:
In [5]:
traindata,testdata = traintest(demo.data,0.33)
traindata.sample(5)
Out[5]:
In [6]:
params = {'penalty':'l1','solver':'liblinear'}
classifier = LogisticClassifier(traindata,'species',**params)
print(classifier)
In [7]:
pairgrid = classifier.show(palette=list('rgb'))
In [8]:
print(classifier.model)
In [9]:
classifier.coefs()
Out[9]:
In [10]:
classifier(testdata).sample(5)
Out[10]:
In [11]:
classifier.probs(testdata).sample(5)
Out[11]:
In [12]:
print('Top 5 worst predictions:')
classifier.test(testdata).nlargest(5,'surprise')
Out[12]:
In [13]:
params = dict()
params['multi_class'] = 'multinomial'
params['penalty'] = 'l2'
params['solver'] = 'lbfgs'
classifier.learn(**params)
classifier.coefs()
Out[13]:
In [14]:
print('Top 5 worst predictions:')
classifier.test(testdata).nlargest(5,'surprise')
Out[14]: