Q001

Multiples of 3 and 5

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

Solution

The condition of a number N being multiples of 3 is N % 3 == 0. Similar for multiples of 5.


In [1]:
solution = 0
N = 0
while N < 1000:
    if (N % 3 == 0) or (N % 5 == 0):
        solution = solution + N
    N+=1
print solution


233168

Q002

Even Fibonacci numbers

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.


In [7]:
s=0
a=1
b=1
while b < 4E6:
    if b % 2 ==0: s=s+b; 
    c=a+b
    a=b
    b=c
print s


4613732

Q003

Largest prime factor

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?


In [31]:
n=600851475143 #13195
a=2
while not a > n:
    if n%a:
        a+=1
    else:
        n//=a
print a


6857

Q004

Largest palindrome product

A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.

Find the largest palindrome made from the product of two 3-digit numbers.


In [8]:
a=999
b=999
while a>100 and b>100:
    c = a*b
    if str(c) == str(c)[::-1]:
        print a,"*",b,"=",c
        break
    a=a-1
    b=b-1


836 * 836 = 698896

Q005

Smallest multiple

2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?


In [31]:
#brute force
n=2520
l=n*11*12*13*14*15*16*17*18*19
while n<l:
    reminder=[n % (i+1) for i in range(20)]
    if sum(reminder) == 0:
        print n
        break
    n=n+1


232792560

In [80]:
# 1*2*3*4*5*7*3=2520
# prime number: must be a factor
# composite number: factorize and remove smaller prime number
def is_prime(n):
    if n < 1:
        return False
    elif n < 4:
        return True
    elif (n % 2 == 0) or (n % 3 == 0):
        return False
    i = 5
    while i*i < n + 1:
        if (n % i == 0):
            return false
        i=i+1
    #while i*i < n + 1:
    #    if (n % i == 0) or (n % (i + 2) == 0):
    #        return False
    #    i = i + 6
    return True

def prime_factors(n):
    i = 2
    factors = []
    while i * i <= n:
        if n % i:
            i += 1
        else:
            n //= i
            factors.append(i)
    if n > 1:
        factors.append(n)
    return factors

fac=[]
for i in range(20):
    if is_prime(i+1):
        fac.append(i+1)
    else:
        test=fac[:]
        for p in prime_factors(i+1):
            if p in test:
                test.remove(p)
            else:
                fac.append(p)
print fac
product = 1
for x in fac:
    product *= x
print product


[1, 2, 3, 2, 5, 7, 2, 3, 11, 13, 2, 17, 19]
232792560

Q006

Sum square difference

The sum of the squares of the first ten natural numbers is,

$1^2 + 2^2 + ... + 10^2 = 385$

The square of the sum of the first ten natural numbers is,

$(1 + 2 + ... + 10)^2 = 55^2 = 3025$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.


In [85]:
sum_of_the_square = sum([i*i for i in range(1,100+1)])
square_of_the_sum = sum(range(1,100+1))
square_of_the_sum = square_of_the_sum*square_of_the_sum
print square_of_the_sum - sum_of_the_square


25164150

Q007

10001st prime

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

What is the 10 001st prime number?


In [91]:
def is_prime(n):
    if n < 2:
        return False
    elif n < 4:
        return True
    elif (n % 2 == 0) or (n % 3 == 0):
        return False
    i = 5
    while i*i < n + 1:
        if (n % i == 0):
            return False
        i=i+1
    return True

i=1
count_prime=0
while count_prime<10001:
    i+=1
    if is_prime(i):
        count_prime+=1
print i,"#",count_prime


104743 # 10001

Q008

Largest product in a series

The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.

73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450

Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?


In [115]:
s='''73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450'''
import re
s=re.sub("[^0-9]", "", s)
#ss = [s[i:i+13] for i in range(len(s)-12)]
#print ss[-1]
maxproduct=1
for i in range(len(s)-12):
    ss = map(int,s[i:i+13])
    product = 1
    for x in ss:
        product *= x
    if product > maxproduct:
        maxproduct=product
print maxproduct


23514624000

Q009

Special Pythagorean triplet

A Pythagorean triplet is a set of three natural numbers, $a < b < c$, for which,

$a^2 + b^2 = c^2$ For example, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.

There exists exactly one Pythagorean triplet for which $a + b + c = 1000$.

Find the product abc.


In [132]:
# By substituting c=1000-(a+b) into Pythagorean equality, we get
# n^2 = 2n(a+b) - 2ab, n=1000 here

def f(a,b,n):
    return 2*n*(a+b) - 2*a*b - n*n

import numpy as np
n=1000
X,Y=np.meshgrid(range(1,n),range(1,n))
X=np.tril(X,-1).ravel()
Y=np.tril(Y,-1).ravel()
for p in zip(X[X>0],Y[Y>0]):
    if f(p[0],p[1],n) == 0:
        print p[0],p[1], n-p[0]-p[1]
        print p[0]*p[1]*(n-p[0]-p[1])


200 375 425
31875000

Q010

Summation of primes

The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Find the sum of all the primes below two million.


In [154]:
def is_prime(n):
    if n < 2:
        return False
    elif n < 4:
        return True
    elif (n % 2 == 0) or (n % 3 == 0):
        return False
    i = 5
    while i*i < n + 1:
        if (n % i == 0) or (n % (i + 2) == 0):
            return False
        i = i + 6
    return True

i=1
s=0
while i<2e6:
    i+=1
    if is_prime(i):
        s+=i
print i,"SUM",s


2000000 SUM 142913828922

In [ ]: