MoodCube: munge Data

take some data and display a 2D Surface plot


In [ ]:
# Library Imports and Python parameter settings
%matplotlib inline
from __future__ import division
#import nds2
import numpy as np
import matplotlib.pyplot as plt
#import matplotlib.mlab as mlab
import scipy.signal as sig
#import scipy.io.wavfile as wave


debugme = 1
# Update the matplotlib configuration parameters:
plt.rcParams.update({'font.size': 20,
                     'font.family': 'serif',
                     'figure.figsize': (10, 8),
                     'axes.grid': True,
                     'grid.color': '#555555'})

In [ ]:
# make some random 2D data
# should it be a particular aspect ratio? (e.g. 640x480)
# or perhaps 2^N or 1000x1000 ?
z = np.random.randn(128,256)

dat = np.load('../Data/test.npz')
v = dat['arr_0']

In [ ]:
# Do some signal conditioning

In [ ]:
plt.figure()
#plt.plot(v[:,0])
#plt.plot(v[:,1])
plt.plot(v[:,3])
plt.show()

In [ ]:


In [ ]:
b = np.zeros((1000, 6))
b.shape

In [ ]:
b[0] = [1,2,3,4,5,6]

In [ ]:
b[0]

In [ ]:
fig = plt.figure(figsize=(16, 8))
#plt.loglog(aligo[:,0], sqrt(aligo[:,1]), color='Indigo', ls='--', alpha=0.65, lw=4)

plt.pcolormesh(z, cmap='jet', shading='flat', antialiased=0)

#leg = plt.legend(loc='best', fancybox=True, fontsize=14)
#leg.get_frame().set_alpha(0.5)
#plt.savefig("TRY.pdf", bbox_inches='tight')
plt.axis('tight')
plt.show()