In [1]:
# Plot time series data from FVCOM model from list of lon,lat locations
# (uses the nearest point, no interpolation)
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import netCDF4
import datetime as dt
import pandas as pd
from StringIO import StringIO
In [2]:
# make dictionary of various model simulation endpoints
models={}
models['Massbay_forecast']='http://www.smast.umassd.edu:8080/thredds/dodsC/FVCOM/NECOFS/Forecasts/NECOFS_FVCOM_OCEAN_MASSBAY_FORECAST.nc'
models['GOM3_Forecast']='http://www.smast.umassd.edu:8080/thredds/dodsC/FVCOM/NECOFS/Forecasts/NECOFS_GOM3_FORECAST.nc'
models['Massbay_forecast_archive']='http://www.smast.umassd.edu:8080/thredds/dodsC/fvcom/archives/necofs_mb'
models['GOM3_30_year_hindcast']='http://www.smast.umassd.edu:8080/thredds/dodsC/fvcom/hindcasts/30yr_gom3'
In [ ]:
def start_stop(url,tvar):
nc = netCDF4.Dataset(url)
ncv = nc.variables
time_var = ncv[tvar]
first = netCDF4.num2date(time_var[0],time_var.units)
last = netCDF4.num2date(time_var[-1],time_var.units)
print first.strftime('%Y-%b-%d %H:%M')
print last.strftime('%Y-%b-%d %H:%M')
In [ ]:
tvar = 'time'
for model,url in models.iteritems():
print model
try:
start_stop(url,tvar)
except:
print '[problem accessing data]'
In [ ]:
#model='Massbay_forecast_archive'
model='Massbay_forecast'
#model='GOM3_Forecast'
#model='GOM3_30_year_hindcast'
url=models[model]
# Desired time for snapshot
# ....right now (or some number of hours from now) ...
start = dt.datetime.utcnow() - dt.timedelta(hours=72)
stop = dt.datetime.utcnow() + dt.timedelta(hours=72)
# ... or specific time (UTC)
#start = dt.datetime(2004,9,1,0,0,0)
#stop = dt.datetime(2004,11,1,0,0,0)
In [ ]:
def dms2dd(d,m,s):
return d+(m+s/60.)/60.
In [ ]:
dms2dd(41,33,15.7)
dms2dd(42,51,17.40)
In [ ]:
-dms2dd(70,30,20.2)
-dms2dd(70,18,42.0)
In [ ]:
x = '''
Station, Lat, Lon
Falmouth Harbor, 41.541575, -70.608020
Sage Lot Pond, 41.554361, -70.505611
'''
In [ ]:
x = '''
Station, Lat, Lon
Boston, 42.368186, -71.047984
Carolyn Seep Spot, 39.8083, -69.5917
Falmouth Harbor, 41.541575, -70.608020
'''
In [ ]:
# Enter desired (Station, Lat, Lon) values here:
x = '''
Station, Lat, Lon
Boston, 42.368186, -71.047984
Scituate Harbor, 42.199447, -70.720090
Scituate Beach, 42.209973, -70.724523
Falmouth Harbor, 41.541575, -70.608020
Marion, 41.689008, -70.746576
Marshfield, 42.108480, -70.648691
Provincetown, 42.042745, -70.171180
Sandwich, 41.767990, -70.466219
Hampton Bay, 42.900103, -70.818510
Gloucester, 42.610253, -70.660570
'''
In [ ]:
x = '''
Station, Lat, Lon
Buoy A, 42.52280, -70.56535
Buoy B, 43.18089, -70.42788
Nets, 42.85483, -70.3116
DITP, 42.347 , -70.960
'''
In [ ]:
# Create a Pandas DataFrame
obs=pd.read_csv(StringIO(x.strip()), sep=",\s*",index_col='Station',engine='python')
In [ ]:
obs
In [ ]:
# find the indices of the points in (x,y) closest to the points in (xi,yi)
def nearxy(x,y,xi,yi):
ind = np.ones(len(xi),dtype=int)
for i in np.arange(len(xi)):
dist = np.sqrt((x-xi[i])**2+(y-yi[i])**2)
ind[i] = dist.argmin()
return ind
In [ ]:
nc=netCDF4.Dataset(url)
In [ ]:
# open NECOFS remote OPeNDAP dataset
ncv = nc.variables
In [ ]:
# find closest NECOFS nodes to station locations
obs['0-Based Index'] = nearxy(ncv['lon'][:],ncv['lat'][:],obs['Lon'],obs['Lat'])
obs
In [ ]:
ncv['lon'][0:10]
In [ ]:
# get time values and convert to datetime objects
time_var = ncv['time']
istart = netCDF4.date2index(start,time_var,select='nearest')
istop = netCDF4.date2index(stop,time_var,select='nearest')
jd = netCDF4.num2date(time_var[istart:istop],time_var.units)
In [ ]:
# get all time steps of water level from each station
# NOTE: this takes a while....
nsta=len(obs)
z = np.ones((len(jd),nsta))
layer = 0 # surface layer =0, bottom layer=-1
for i in range(nsta):
z[:,i] = ncv['temp'][istart:istop,layer,obs['0-Based Index'][i]]
In [ ]:
# make a DataFrame out of the interpolated time series at each location
zvals=pd.DataFrame(z,index=jd,columns=obs.index)
In [ ]:
# list out a few values
zvals.head()
In [ ]:
# plotting at DataFrame is easy!
ax=zvals.plot(figsize=(16,4),grid=True,
title=('NECOFS Forecast Bottom Water Temperature from %s Grid' % model),legend=False);
# read units from dataset for ylabel
plt.ylabel(ncv['temp'].units)
# plotting the legend outside the axis is a bit tricky
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5));
In [ ]:
# make a new DataFrame of maximum water levels at all stations
b=pd.DataFrame(zvals.idxmax(),columns=['time of max water temp (UTC)'])
# create heading for new column containing max water level
zmax_heading='tmax (%s)' % ncv['temp'].units
# Add new column to DataFrame
b[zmax_heading]=zvals.max()
In [ ]:
b
In [ ]:
In [ ]: