CSW access with OWSLib using ISO queryables

Demonstration of how to use the OGC Catalog Services for the Web (CSW) to search for find all datasets containing a specified variable that fall withing a specified date range and geospatial bounding box, and then use the data access service contained in the returned metadata to retrieve and visualize the data.

Here we are accessing a Geoportal Server CSW, but in the future we should be able to point it toward any another CSW service, such as the one provided by catalog.data.gov.


In [1]:
from pylab import *
from owslib.csw import CatalogueServiceWeb
from owslib import fes
import netCDF4
import pandas as pd

In [2]:
from IPython.core.display import HTML
HTML('<iframe src=http://geoport.whoi.edu/geoportal/ width=950 height=400></iframe>')


Out[2]:

In [3]:
# connect to CSW, explore it's properties
#endpoint = 'http://www.ngdc.noaa.gov/geoportal/csw' # NGDC Geoportal
#endpoint = 'http://www.nodc.noaa.gov/geoportal/csw'   # NODC Geoportal: granule level
#endpoint = 'http://data.nodc.noaa.gov/geoportal/csw'  # NODC Geoportal: collection level
    
#endpoint = 'http://geodiscover.cgdi.ca/wes/serviceManagerCSW/csw'  # NRCAN CUSTOM
#endpoint = 'http://geoport.whoi.edu/gi-cat/services/cswiso' # USGS Woods Hole GI_CAT
#endpoint = 'http://cida.usgs.gov/gdp/geonetwork/srv/en/csw' # USGS CIDA Geonetwork
#endpoint = 'http://cmgds.marine.usgs.gov/geonetwork/srv/en/csw' # USGS Coastal and Marine Program

endpoint = 'http://geoport.whoi.edu/geoportal/csw' # USGS Woods Hole Geoportal 

csw = CatalogueServiceWeb(endpoint,timeout=30)
csw.version


Out[3]:
'2.0.2'

In [4]:
[op.name for op in csw.operations]


Out[4]:
['GetCapabilities',
 'DescribeRecord',
 'GetRecords',
 'GetRecordById',
 'Transaction']

In [5]:
# hopefully something like this will be implemented in fes soon
def dateRange(start_date='1900-01-01',stop_date='2100-01-01',constraint='overlaps'):
    if constraint == 'overlaps':
        start = fes.PropertyIsLessThanOrEqualTo(propertyname='startDate', literal=stop_date)
        stop = fes.PropertyIsGreaterThanOrEqualTo(propertyname='endDate', literal=start_date)
    elif constraint == 'within':
        start = fes.PropertyIsGreaterThanOrEqualTo(propertyname='startDate', literal=start_date)
        stop = fes.PropertyIsLessThanOrEqualTo(propertyname='endDate', literal=stop_date)
    return start,stop

In [6]:
# Perform the CSW query, using Kyle's cool new filters on ISO queryables
# find all datasets in a bounding box and temporal extent that have 
# specific keywords and also can be accessed via OPeNDAP  

bbox = fes.BBox([-71.5, 39.5, -63.0, 46])
start,stop = dateRange('1970-01-01','1979-02-01')
std_name = 'sea_water_temperature'
keywords = fes.PropertyIsLike(propertyname='anyText', literal=std_name)
serviceType = fes.PropertyIsLike(propertyname='apiso:ServiceType', literal='*opendap*')

# apply all the filters using the "and" syntax: [[filter1,filter2]]
csw.getrecords2(constraints=[[keywords,start,stop,serviceType,bbox]],maxrecords=15,esn='full')
csw.records.keys()


Out[6]:
['GB_SED/107P-A_1d.cdf',
 'ARGO_MERCHANT/1211TR-A1H_1d.cdf',
 'whoi_data/5872B1D624T_1d.cdf',
 'ARGO_MERCHANT/1211TR-A_1d.cdf',
 'GB_SED/116T-A1H_1d.cdf',
 'whoi_data/5872ATEMP_1d.cdf',
 'GB_SED/107T-A_1d.cdf',
 'GB_SED/111P-A1H_1d.cdf',
 'GB_SED/107T-A1H_1d.cdf',
 'GB_SED/116T-A_1d.cdf',
 'GB_SED/107P-A1H_1d.cdf',
 'whoi_data/5872ATEMP1H_1d.cdf',
 'GB_SED/111P-A_1d.cdf',
 'GB_SED/110T-A1H_1d.cdf',
 'GB_SED/1013-A1H_1d.cdf']

In [7]:
for rec,item in csw.records.iteritems():
    print item.title


107P-A.cdf - Georges Bank Current and Sediment Transport Studies
1211TR-A1H.cdf - Argo Merchant Experiment
5872B1D624T.cdf - Historical WHOI Buoy Group data
1211TR-A.cdf - Argo Merchant Experiment
116T-A1H.cdf - Georges Bank Current and Sediment Transport Studies
5872ATEMP.cdf - Historical WHOI Buoy Group data
107T-A.cdf - Georges Bank Current and Sediment Transport Studies
111P-A1H.cdf - Georges Bank Current and Sediment Transport Studies
107T-A1H.cdf - Georges Bank Current and Sediment Transport Studies
116T-A.cdf - Georges Bank Current and Sediment Transport Studies
107P-A1H.cdf - Georges Bank Current and Sediment Transport Studies
5872ATEMP1H.cdf - Historical WHOI Buoy Group data
111P-A.cdf - Georges Bank Current and Sediment Transport Studies
110T-A1H.cdf - Georges Bank Current and Sediment Transport Studies
1013-A1H.cdf - Georges Bank Current and Sediment Transport Studies

In [8]:
# get specific ServiceType URL from records
def service_urls(records,service_string='urn:x-esri:specification:ServiceType:odp:url'):
    urls=[]
    for key,rec in records.iteritems():
        #create a generator object, and iterate through it until the match is found
        #if not found, gets the default value (here "none")
        url = next((d['url'] for d in rec.references if d['scheme'] == service_string), None)
        if url is not None:
            urls.append(url)
    return urls

In [9]:
dap_urls = service_urls(csw.records,service_string='urn:x-esri:specification:ServiceType:odp:url')
print ".html\n".join(dap_urls)


http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/107P-A_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/ARGO_MERCHANT/1211TR-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/whoi_data/5872B1D624T_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/ARGO_MERCHANT/1211TR-A_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/116T-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/whoi_data/5872ATEMP_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/107T-A_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/111P-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/107T-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/116T-A_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/107P-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/whoi_data/5872ATEMP1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/111P-A_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/110T-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/1013-A1H_1d.cdf

In [10]:
def standard_names(nc):
    '''
    get dictionary of variables with standard_names
    '''
    d={}
    for k,v in nc.iteritems():
        try:
            standard_name=v.getncattr('standard_name')
            try:
                d[standard_name]=[d[standard_name],[k]]
            except:
                d[standard_name]=[k]
        except:
            pass
    return d

In [11]:
# hack for speed of access and plotting in this demo -- select data with 'A1H' in the URL
dap_urls = [url for url in dap_urls if '-A1H' in url]
print ".html\n".join(dap_urls)


http://geoport-dev.whoi.edu/thredds/dodsC/ARGO_MERCHANT/1211TR-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/116T-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/111P-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/107T-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/107P-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/110T-A1H_1d.cdf.html
http://geoport-dev.whoi.edu/thredds/dodsC/GB_SED/1013-A1H_1d.cdf

In [12]:
for url in dap_urls:
    nc = netCDF4.Dataset(url).variables
    lat = nc['lat'][:]
    lon = nc['lon'][:]
    time_var = nc['time']
    dtime = netCDF4.num2date(time_var[:],time_var.units)
    # make a dictionary containing all data from variables that matched the standard_name
    # find list of variables for each standard_name
    d = standard_names(nc)
    # find all the variables matching standard_name=std_name
    d[std_name]
    # read all the data into a dictionary
    data_dict={}
    for v in d[std_name]:
        data_dict[v]=nc[v][:].flatten()
    # Create Pandas data frame, with time index
    ts = pd.DataFrame.from_dict(data_dict)
    ts.index=dtime
    ts.plot(figsize=(12,4));
    title(std_name)



In [12]: