In [1]:
    
import numpy as np
import ctypes
from ctypes import *
import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import math
    
In [2]:
    
%matplotlib inline
    
In [3]:
    
gridDIM = 2048
size = gridDIM
axes0 = 0
segment = 0
DIR_BASE = "/home/rcabrera/Documents/source/Python/FFT-dev/FAFT2048_C2C-tmp6/"
# FAFT 
_faft4096_1D = ctypes.cdll.LoadLibrary( DIR_BASE+'FAFT4096_1D_C2C.so' )
_faft4096_1D.FAFT4096_1D_C2C.restype = int
_faft4096_1D.FAFT4096_1D_C2C.argtypes = [ctypes.c_void_p, ctypes.c_float, ctypes.c_float, ctypes.c_int]
cuda_faft = _faft4096_1D.FAFT4096_1D_C2C
    
In [4]:
    
def fftGaussian(p,sigma):
    return np.exp( - p**2*sigma**2/2.  )
    
In [5]:
    
def Gaussian(x,mu,sigma):
    return np.exp( -(x-mu)**2/(2*sigma**2) )/np.sqrt( np.sqrt(np.pi)*sigma )
def fftGaussian(p,mu,sigma):
    return np.exp( - p**2*sigma**2/2.  )*np.exp( -1j*mu*p ) * np.sqrt( sigma/np.sqrt(np.pi) )
    
In [6]:
    
# Gaussian parameters
mu = 1.5
#mu = 0
sigma = 1.
# Grid parameters
x_amplitude = 8.
p_amplitude = 5.                # With the traditional method p amplitude is fixed to: 2 * np.pi /( 2*x_amplitude ) 
dx = 2*x_amplitude/float(size)  # This is beta in Bailey's paper
dp = 2*p_amplitude/float(size)  # This is gamma in Bailey's paper
delta = dx*dp/(2*np.pi)
x = np.linspace( -x_amplitude, x_amplitude-dx, size)  
p = np.linspace( -p_amplitude, p_amplitude-dx, size) 
f = Gaussian(x, mu, sigma)
plt.plot(x, f,'-')
axis_font = {'size':'24'}
plt.text( -10, 1.1, 'Full Signal on the Host (2048 points)' , **axis_font)
plt.ylabel('$e^{-\\frac{1}{\\sigma }x^2}$',**axis_font)
plt.xlabel('$x$',**axis_font)
plt.ylim(0,1)
print ' Amplitude x = ',x_amplitude
print ' Amplitude p = ',p_amplitude
print '        '
print 'sigma = ', sigma
print 'n     = ', x.size
print 'dx    = ', dx
print 'dp    = ', dp
print '           standard fft dp = ',2 * np.pi /( 2*x_amplitude ) , '     '
print '    '
print 'delta = ', delta
print '    '
print 'The Gaussian extends to the numerical error in single precision:'  
print '  extremes ', f[0], ' , ', f[-1]
    
    
    
In [7]:
    
# Copy data to GPU
f_gpu = gpuarray.to_gpu( np.ascontiguousarray( f , dtype = np.complex64 ) )
    
In [8]:
    
# LOG PLOT 
plt.figure(figsize=(10,10))
plt.semilogy( x, f_gpu.get()  , '-', label='numerical', markersize=1 )
plt.semilogy( x, Gaussian(x, mu, sigma) ,  'r--' ,label = 'analytical' )
plt.legend(loc='upper left')
plt.ylim(1e-8,1)
plt.ylabel('$e^{- \\frac{x^2}{2 \\sigma^2 } }$',**axis_font)
plt.xlabel('$x$',**axis_font)
    
    
    Out[8]:
    
In [9]:
    
# Executing FFT
cuda_faft( int(f_gpu.gpudata), dx, delta, segment )
    
    Out[9]:
In [10]:
    
# Normalization 
norm = np.sum(np.abs(f_gpu.get())**2)
norm *= dp
norm = np.sqrt(norm)
f_gpu    /= norm
    
In [11]:
    
plt.figure(figsize=(10,10))
plt.plot( f_gpu.get().real , '.', label='Real', markersize=1 )
plt.plot( f_gpu.get().imag , 'r-', label='Imag', markersize=1 )
plt.legend(loc='upper left')
#plt.ylim(-0.3 , 1.1)
plt.ylabel('$e^{- \\frac{\\sigma x^2}{2} }$',**axis_font)
plt.xlabel('$p$',**axis_font)
    
    Out[11]:
    
In [12]:
    
# Standard fft :
# Observe how much memory is lost in zeros 
plt.figure(figsize=(10,10))
plt.plot( np.fft.fftshift( np.fft.fft( np.fft.fftshift(f)  ) ).real  ,'-',  label='Real')
plt.plot( np.fft.fftshift( np.fft.fft( np.fft.fftshift(f)  ) ).real  ,'--'  )
plt.plot( np.fft.fftshift( np.fft.fft( np.fft.fftshift(f)  ) ).imag  ,'-', label='Imag')
plt.plot( np.fft.fftshift( np.fft.fft( np.fft.fftshift(f)  ) ).imag  ,'--')
plt.ylabel('$e^{- \\frac{\\sigma x^2}{2} }$',**axis_font)
plt.xlabel('$p$',**axis_font)
plt.legend(loc='upper left')
    
    Out[12]:
    
In [13]:
    
# For Inverse Transform, enter "-delta"
cuda_faft( int(f_gpu.gpudata), dx, -delta, segment )
    
    Out[13]:
In [14]:
    
# Normalization 
norm = np.sum(np.abs(f_gpu.get())**2)
norm *= dx
norm = np.sqrt(norm)
f_gpu    /= norm
    
In [15]:
    
plt.figure(figsize=(10,10))
plt.plot( x, f_gpu.get().real, '-', label='numerical')
plt.plot( x, Gaussian(x, mu, sigma) , '--',label = 'analytical')
plt.legend(loc='upper left')
#plt.ylim(0,0.5)
plt.ylabel('$e^{- \\frac{x^2}{2 \\sigma^2 } }$',**axis_font)
plt.xlabel('$p$',**axis_font)
    
    Out[15]:
    
In [16]:
    
# LOG PLOT 
plt.figure(figsize=(10,10))
plt.semilogy( x, f_gpu.get().real  , '-', label='numerical')
plt.semilogy( x, f  , '--', label='original')
plt.semilogy( x, Gaussian(x, mu, sigma) , label = 'analytical')
plt.legend(loc='upper left')
plt.ylim(1e-8,1)
plt.ylabel('$e^{- \\frac{x^2}{2 \\sigma^2 } }$',**axis_font)
plt.xlabel('$p$',**axis_font)
    
    Out[16]:
    
In [16]: