Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_4 (Conv2D) (None, 28, 28, 64) 640
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 14, 14, 64) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 14, 14, 64) 36928
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 7, 7, 64) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 7, 7, 64) 36928
_________________________________________________________________
flatten_2 (Flatten) (None, 3136) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 3136) 0
_________________________________________________________________
dense_2 (Dense) (None, 10) 31370
_________________________________________________________________
activation_2 (Activation) (None, 10) 0
=================================================================
Total params: 105,866
Trainable params: 105,866
Non-trainable params: 0
_________________________________________________________________
WARNING:tensorflow:From //anaconda3/lib/python3.7/site-packages/keras/optimizers.py:793: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
WARNING:tensorflow:From //anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:3576: The name tf.log is deprecated. Please use tf.math.log instead.
WARNING:tensorflow:From //anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/math_grad.py:1250: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
Epoch 1/20
60000/60000 [==============================] - 42s 697us/step - loss: 0.2128 - acc: 0.9352
Epoch 2/20
60000/60000 [==============================] - 42s 702us/step - loss: 0.0538 - acc: 0.9837
Epoch 3/20
60000/60000 [==============================] - 41s 688us/step - loss: 0.0385 - acc: 0.9878
Epoch 4/20
60000/60000 [==============================] - 41s 689us/step - loss: 0.0304 - acc: 0.9903
Epoch 5/20
60000/60000 [==============================] - 41s 689us/step - loss: 0.0258 - acc: 0.9919
Epoch 6/20
60000/60000 [==============================] - 41s 690us/step - loss: 0.0207 - acc: 0.9932
Epoch 7/20
60000/60000 [==============================] - 41s 686us/step - loss: 0.0182 - acc: 0.9942
Epoch 8/20
60000/60000 [==============================] - 41s 689us/step - loss: 0.0157 - acc: 0.9950
Epoch 9/20
60000/60000 [==============================] - 41s 686us/step - loss: 0.0134 - acc: 0.9957
Epoch 10/20
60000/60000 [==============================] - 41s 685us/step - loss: 0.0122 - acc: 0.9961
Epoch 11/20
60000/60000 [==============================] - 41s 685us/step - loss: 0.0119 - acc: 0.9961
Epoch 12/20
60000/60000 [==============================] - 41s 683us/step - loss: 0.0095 - acc: 0.9969
Epoch 13/20
60000/60000 [==============================] - 41s 687us/step - loss: 0.0089 - acc: 0.9969
Epoch 14/20
60000/60000 [==============================] - 42s 698us/step - loss: 0.0086 - acc: 0.9972
Epoch 15/20
60000/60000 [==============================] - 45s 744us/step - loss: 0.0070 - acc: 0.9975
Epoch 16/20
60000/60000 [==============================] - 41s 691us/step - loss: 0.0075 - acc: 0.9974
Epoch 17/20
60000/60000 [==============================] - 41s 688us/step - loss: 0.0062 - acc: 0.9977
Epoch 18/20
60000/60000 [==============================] - 41s 691us/step - loss: 0.0065 - acc: 0.9976
Epoch 19/20
60000/60000 [==============================] - 42s 693us/step - loss: 0.0047 - acc: 0.9986
Epoch 20/20
60000/60000 [==============================] - 41s 690us/step - loss: 0.0056 - acc: 0.9981
10000/10000 [==============================] - 1s 144us/step
Test accuracy: 99.2%