This notebook is a simulation of 5000 ms of 400 independent descending commands following a gamma distribution with mean of 12 ms and order 10 and the Soleus muscle (800 motoneurons). Each descending command connects to approximately 30 % of the motor units.
In [7]:
import sys
sys.path.insert(0, '..')
import time
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from Configuration import Configuration
from MotorUnitPool import MotorUnitPool
from NeuralTract import NeuralTract
from SynapsesFactory import SynapsesFactory
In [8]:
conf = Configuration('confMNPoolWithDescendingCommand.rmto')
conf.simDuration_ms = 5000 # Here I change simulation duration without changing the Configuration file.
In [12]:
pools = dict()
pools[0] = MotorUnitPool(conf, 'SOL')
pools[1] = NeuralTract(conf, 'CMExt')
Syn = SynapsesFactory(conf, pools)
del Syn
GammaOrder = 10
FR = 1000/12.0
In [13]:
t = np.arange(0.0, conf.simDuration_ms, conf.timeStep_ms)
In [14]:
dendV = np.zeros_like(t)
somaV = np.zeros_like(t)
tic = time.time()
for i in xrange(0, len(t)-1):
pools[1].atualizePool(t[i],FR, GammaOrder)
pools[0].atualizeMotorUnitPool(t[i])
dendV[i] = pools[0].unit[2].v_mV[0]
somaV[i] = pools[0].unit[2].v_mV[1]
toc = time.time()
print str(toc - tic) + ' seconds'
The spike times of all descending commands along the 5000 ms of simulation is shown in Fig. \ref{fig:spikesDescMN}.
In [6]:
pools[0].listSpikes()
pools[1].listSpikes()
In [7]:
plt.figure()
plt.plot(pools[1].poolTerminalSpikes[:, 0],
pools[1].poolTerminalSpikes[:, 1]+1, '.')
plt.xlabel('t (ms)')
plt.ylabel('Descending Command index')
Out[7]:
The spike times of all descending commands along the last 500 ms of simulation is shown in Fig. \ref{fig:spikesDescMNLast}.
In [8]:
plt.figure()
plt.plot(pools[1].poolTerminalSpikes[pools[1].poolTerminalSpikes[:, 0]>4500, 0],
pools[1].poolTerminalSpikes[pools[1].poolTerminalSpikes[:, 0]>4500, 1]+1, '.')
plt.xlabel('t (ms)')
plt.ylabel('Descending Command index')
Out[8]:
The spike times of the MNs along the 5000 ms of simulation is shown in Fig. \ref{fig:spikesMNMN}.
In [9]:
plt.figure()
plt.plot(pools[0].poolTerminalSpikes[:, 0],
pools[0].poolTerminalSpikes[:, 1]+1, '.')
plt.xlabel('t (ms)')
plt.ylabel('Motor Unit index')
Out[9]:
The spike times of the MNs along the last 500 ms of simulation is shown in Fig. \ref{fig:spikesMNMNLast}.
In [10]:
plt.figure()
plt.plot(pools[0].poolTerminalSpikes[pools[0].poolTerminalSpikes[:, 0]>4500, 0],
pools[0].poolTerminalSpikes[pools[0].poolTerminalSpikes[:, 0]>4500, 1]+1, '.')
plt.xlabel('t (ms)')
plt.ylabel('Motor Unit index')
Out[10]:
The muscle force during the simulation \ref{fig:force}.
In [11]:
plt.figure()
plt.plot(t, pools[0].Muscle.force, '-')
plt.xlabel('t (ms)')
plt.ylabel('Muscle Force (N)')
Out[11]:
The membrane potential of the dendrite compartment is shown in Fig.\ref{fig:dendV}.
In [12]:
plt.figure()
plt.plot(t, dendV, '-')
plt.xlabel('t (ms)')
plt.ylabel('Dendrite Membrane Potential (mV)')
Out[12]:
The membrane potential of the soma compartment is shown in Fig.\ref{fig:somaV}.
In [13]:
plt.figure()
plt.plot(t, somaV, '-')
plt.xlabel('t (ms)')
plt.ylabel('Soma membrane potential (mV)')
Out[13]:
The membrane potential of the soma compartment in the last 300 ms is shown in Fig.\ref{fig:somaVLast}.
In [14]:
plt.figure()
plt.plot(t[t>4700], somaV[t>4700], '-')
plt.xlabel('t (ms)')
plt.ylabel('Soma membrane potential (mV)')
Out[14]:
In [ ]: