In [12]:
import numpy as np
import cv2
# We point OpenCV's CascadeClassifier function to where our
# classifier (XML file format) is stored
face_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade_frontalface_default.xml')
# Load our image then convert it to grayscale
image = cv2.imread('images/Trump.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Our classifier returns the ROI of the detected face as a tuple
# It stores the top left coordinate and the bottom right coordiantes
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
# When no faces detected, face_classifier returns and empty tuple
if faces is ():
print("No faces found")
# We iterate through our faces array and draw a rectangle
# over each face in faces
for (x,y,w,h) in faces:
cv2.rectangle(image, (x,y), (x+w,y+h), (127,0,255), 2)
cv2.imshow('Face Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
In [7]:
import numpy as np
import cv2
face_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade_frontalface_default.xml')
eye_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade_eye.xml')
img = cv2.imread('images/Trump.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
# When no faces detected, face_classifier returns and empty tuple
if faces is ():
print("No Face Found")
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(127,0,255),2)
cv2.imshow('img',img)
cv2.waitKey(0)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_classifier.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(255,255,0),2)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
In [11]:
import cv2
import numpy as np
face_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade_frontalface_default.xml')
eye_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade_eye.xml')
def face_detector(img, size=0.5):
# Convert image to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces is ():
return img
for (x,y,w,h) in faces:
x = x - 50
w = w + 50
y = y - 50
h = h + 50
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_classifier.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,0,255),2)
roi_color = cv2.flip(roi_color,1)
return roi_color
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
cv2.imshow('Our Face Extractor', face_detector(frame))
if cv2.waitKey(1) == 13: #13 is the Enter Key
break
cap.release()
cv2.destroyAllWindows()
ourClassifier.detectMultiScale(input image, Scale Factor , Min Neighbors)
In [ ]:
In [ ]:
In [ ]: