In [1]:
__depends__ = ["../results/ebtel_varying_flux_limiter_results.pickle"]
__dest__ = "../results/f2.eps"
In [2]:
import os
import sys
import pickle
import numpy as np
from scipy.optimize import curve_fit
import seaborn.apionly as sns
import matplotlib.pyplot as plt
from matplotlib import ticker
sys.path.append(os.path.join(os.environ['EXP_DIR'],'EBTEL_analysis/src'))
import em_binner as emb
%matplotlib inline
In [3]:
plt.rcParams.update({'figure.figsize' : [8,8]})
First, load the EBTEL results.
In [4]:
with open(__depends__[0],'rb') as f:
ebtel_results = pickle.load(f)
Define some parameters for labeling.
In [5]:
flux_limiter_labels = [r'$f=1$',r'$f=0.53$',r'$f=1/6$',r'$f=0.1$',r'$f=1/30$',r'$\mathrm{Spitzer}$']
Set some parameters for doing some quick curve fitting to derive the emission measure slope.
In [6]:
Ta = 7.0
Tb = 7.5
def pl_func(x,a,b):
return a + b*x
Now, build the plot. We only show $\mathrm{EM}(T)$ for $T>T_M$ because the distributions are identical at cool temperatures.
In [7]:
fig = plt.figure()
ax = fig.gca()
for i in range(len(ebtel_results)):
binner = emb.EM_Binner(2.*ebtel_results[i]['loop_length'],time=ebtel_results[i]['t'],temp=ebtel_results[i]['T'],
density=ebtel_results[i]['n'])
binner.build_em_dist()
hist,bin_edges = np.histogram(binner.T_em_flat,bins=binner.T_em_histo_bins,weights=np.array(binner.em_flat))
if ebtel_results[i]['heat_flux_option']==False:
ls='--'
lw=5
marker=''
else:
ls = 'solid'
lw=2
marker=''
ax.plot((bin_edges[:-1]+bin_edges[1:])/2,hist/10,color=sns.color_palette('deep')[i],
linestyle=ls,label=flux_limiter_labels[i],linewidth=lw,marker=marker,markersize=10,markevery=5)
#Curve fitting
logT = np.log10((bin_edges[:-1]+bin_edges[1:])/2)
logem = np.log10(hist/10)
T_fit = logT[(logT>=Ta) & (logT<=Tb)]
em_fit = logem[(logT>=Ta) & (logT<=Tb)]
try:
popt,pcov = curve_fit(pl_func,T_fit,em_fit)
print('Value of the slope for %s is b=%f'%(flux_limiter_labels[i],popt[1]))
except ValueError:
print('Cannot find fit for %s'%flux_limiter_labels[i])
#aesthetics
#scale
ax.set_yscale('log')
ax.set_xscale('log')
#limits
ax.set_ylim([1e+23,1e+28])
ax.set_xlim([10**6.5,10**7.5])
#ticks
ax.yaxis.set_major_locator(ticker.LogLocator(numticks=5))
#labels
ax.set_xlabel(r'$T\,\,\mathrm{(K)}$')
ax.set_ylabel(r'$\mathrm{EM}\,\,(\mathrm{cm}^{-5})$')
#legend
ax.legend(loc='best')
#save
plt.savefig(__dest__)
plt.show()
In [8]: