In this example we'll be generating a KS statistic plot with scikit-learn's LogisticRegression classifier to the breast cancer dataset. The scikitplot.metrics.plot_ks_statistic takes the ground-truth labels y_true and the predicted probabilities y_probas
In [1]:
    
from __future__ import absolute_import
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_breast_cancer as load_data
# Import scikit-plot
import scikitplot as skplt
%pylab inline
pylab.rcParams['figure.figsize'] = (14, 14)
    
    
In [2]:
    
# Load the data
X, y = load_data(return_X_y=True)
# Create classifier instance
lr = LogisticRegression()
# Fit the model
lr.fit(X,y)
y_probas = lr.predict_proba(X)
    
In [3]:
    
# Plot!
skplt.metrics.plot_ks_statistic(y, y_probas)
plt.show()