In [1]:
import sncosmo
import analyzeSN as ans
from analyzeSN import LightCurve
In [2]:
import pandas as pd
import numpy as np
In [3]:
!ls *.ascii
In [4]:
fname = 'lc_field744_mjd_49923.ascii'
In [5]:
lcdf = pd.read_csv(fname, delim_whitespace=True)
In [6]:
lcdf.head()
Out[6]:
In [7]:
banddict = dict((x, 'lsst_' + x) for x in 'ugrizy')
In [8]:
lightcurve = LightCurve(lcdf[['time', 'flux', 'band', 'fluxerr','zp', 'zpsys', 'SNR']], bandNameDict=banddict)
In [9]:
lightcurve.lightCurve.head()
Out[9]:
In [10]:
lightcurve.coaddedLC().head()
Out[10]:
In [11]:
%matplotlib inline
import matplotlib.pyplot as plt
In [12]:
fig = sncosmo.plot_lc(lightcurve.snCosmoLC(), color='k')
If you want to plot the model
In [13]:
from lsst.sims.catUtils.supernovae import SNObject
In [14]:
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(H0=73., Om0=0.25)
In [15]:
snobject = SNObject(ra=0., dec=np.degrees(0.794553))
paramDict = dict(x1=0., z=0.5, c=0., t0=49923.)
mwebv = snobject.ebvofMW
#snobject.set_MWebv(0.)
snobject.set(**paramDict)
snobject.set_source_peakabsmag(-19.3, 'BessellB', 'AB')
snobject.set_MWebv(0.)
sncosmoModel = snobject.equivalentSNCosmoModel()
In [16]:
print sncosmoModel
In [17]:
fig = sncosmo.plot_lc(lightcurve.snCosmoLC(), color='k', model=sncosmoModel)
In [ ]: