Python Machine Learning - Code Examples

Chapter 4 - Building Good Training Sets – Data Pre-Processing

Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).


In [1]:
%load_ext watermark
%watermark -a 'Sebastian Raschka' -u -d -p numpy,pandas,matplotlib,sklearn


Sebastian Raschka 
last updated: 2017-03-10 

numpy 1.12.0
pandas 0.19.2
matplotlib 2.0.0
sklearn 0.18.1

The use of watermark is optional. You can install this IPython extension via "pip install watermark". For more information, please see: https://github.com/rasbt/watermark.



Overview




In [2]:
from IPython.display import Image
%matplotlib inline

In [3]:
# Added version check for recent scikit-learn 0.18 checks
from distutils.version import LooseVersion as Version
from sklearn import __version__ as sklearn_version

Dealing with missing data


In [4]:
import pandas as pd
from io import StringIO

csv_data = '''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,'''

# If you are using Python 2.7, you need
# to convert the string to unicode:
# csv_data = unicode(csv_data)

df = pd.read_csv(StringIO(csv_data))
df


Out[4]:
A B C D
0 1.0 2.0 3.0 4.0
1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

In [5]:
df.isnull().sum()


Out[5]:
A    0
B    0
C    1
D    1
dtype: int64



Eliminating samples or features with missing values


In [6]:
df.dropna()


Out[6]:
A B C D
0 1.0 2.0 3.0 4.0

In [7]:
df.dropna(axis=1)


Out[7]:
A B
0 1.0 2.0
1 5.0 6.0
2 10.0 11.0

In [8]:
# only drop rows where all columns are NaN
df.dropna(how='all')


Out[8]:
A B C D
0 1.0 2.0 3.0 4.0
1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

In [9]:
# drop rows that have not at least 4 non-NaN values
df.dropna(thresh=4)


Out[9]:
A B C D
0 1.0 2.0 3.0 4.0

In [10]:
# only drop rows where NaN appear in specific columns (here: 'C')
df.dropna(subset=['C'])


Out[10]:
A B C D
0 1.0 2.0 3.0 4.0
2 10.0 11.0 12.0 NaN



Imputing missing values


In [11]:
from sklearn.preprocessing import Imputer

imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
imr = imr.fit(df)
imputed_data = imr.transform(df.values)
imputed_data


Out[11]:
array([[  1. ,   2. ,   3. ,   4. ],
       [  5. ,   6. ,   7.5,   8. ],
       [ 10. ,  11. ,  12. ,   6. ]])

In [12]:
df.values


Out[12]:
array([[  1.,   2.,   3.,   4.],
       [  5.,   6.,  nan,   8.],
       [ 10.,  11.,  12.,  nan]])



Understanding the scikit-learn estimator API


In [13]:
Image(filename='./images/04_04.png', width=400)


Out[13]:

In [14]:
Image(filename='./images/04_05.png', width=400)


Out[14]:



Handling categorical data


In [15]:
import pandas as pd

df = pd.DataFrame([['green', 'M', 10.1, 'class1'],
                   ['red', 'L', 13.5, 'class2'],
                   ['blue', 'XL', 15.3, 'class1']])

df.columns = ['color', 'size', 'price', 'classlabel']
df


Out[15]:
color size price classlabel
0 green M 10.1 class1
1 red L 13.5 class2
2 blue XL 15.3 class1



Mapping ordinal features


In [16]:
size_mapping = {'XL': 3,
                'L': 2,
                'M': 1}

df['size'] = df['size'].map(size_mapping)
df


Out[16]:
color size price classlabel
0 green 1 10.1 class1
1 red 2 13.5 class2
2 blue 3 15.3 class1

In [17]:
inv_size_mapping = {v: k for k, v in size_mapping.items()}
df['size'].map(inv_size_mapping)


Out[17]:
0     M
1     L
2    XL
Name: size, dtype: object



Encoding class labels


In [18]:
import numpy as np

class_mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))}
class_mapping


Out[18]:
{'class1': 0, 'class2': 1}

In [19]:
df['classlabel'] = df['classlabel'].map(class_mapping)
df


Out[19]:
color size price classlabel
0 green 1 10.1 0
1 red 2 13.5 1
2 blue 3 15.3 0

In [20]:
inv_class_mapping = {v: k for k, v in class_mapping.items()}
df['classlabel'] = df['classlabel'].map(inv_class_mapping)
df


Out[20]:
color size price classlabel
0 green 1 10.1 class1
1 red 2 13.5 class2
2 blue 3 15.3 class1

In [21]:
from sklearn.preprocessing import LabelEncoder

class_le = LabelEncoder()
y = class_le.fit_transform(df['classlabel'].values)
y


Out[21]:
array([0, 1, 0])

In [22]:
class_le.inverse_transform(y)


Out[22]:
array(['class1', 'class2', 'class1'], dtype=object)



Performing one-hot encoding on nominal features


In [23]:
X = df[['color', 'size', 'price']].values

color_le = LabelEncoder()
X[:, 0] = color_le.fit_transform(X[:, 0])
X


Out[23]:
array([[1, 1, 10.1],
       [2, 2, 13.5],
       [0, 3, 15.3]], dtype=object)

In [24]:
from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder(categorical_features=[0])
ohe.fit_transform(X).toarray()


Out[24]:
array([[  0. ,   1. ,   0. ,   1. ,  10.1],
       [  0. ,   0. ,   1. ,   2. ,  13.5],
       [  1. ,   0. ,   0. ,   3. ,  15.3]])

In [25]:
pd.get_dummies(df[['price', 'color', 'size']])


Out[25]:
price size color_blue color_green color_red
0 10.1 1 0 1 0
1 13.5 2 0 0 1
2 15.3 3 1 0 0



Partitioning a dataset in training and test sets


In [26]:
df_wine = pd.read_csv('https://archive.ics.uci.edu/'
                      'ml/machine-learning-databases/wine/wine.data',
                      header=None)

df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash',
                   'Alcalinity of ash', 'Magnesium', 'Total phenols',
                   'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',
                   'Color intensity', 'Hue', 'OD280/OD315 of diluted wines',
                   'Proline']

print('Class labels', np.unique(df_wine['Class label']))
df_wine.head()


Class labels [1 2 3]
Out[26]:
Class label Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue OD280/OD315 of diluted wines Proline
0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735

Note:

If the link to the Wine dataset provided above does not work for you, you can find a local copy in this repository at ./../datasets/wine/wine.data.

Or you could fetch it via


In [27]:
df_wine = pd.read_csv('https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/wine/wine.data', header=None)

df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 
'Alcalinity of ash', 'Magnesium', 'Total phenols', 
'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 
'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline']
df_wine.head()


Out[27]:
Class label Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue OD280/OD315 of diluted wines Proline
0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480
4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735


In [28]:
if Version(sklearn_version) < '0.18':
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values

X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=0.3, random_state=0)



Bringing features onto the same scale


In [29]:
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)

In [30]:
from sklearn.preprocessing import StandardScaler

stdsc = StandardScaler()
X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)

A visual example:


In [31]:
ex = pd.DataFrame([0, 1, 2, 3, 4, 5])

# standardize
ex[1] = (ex[0] - ex[0].mean()) / ex[0].std(ddof=0)

# Please note that pandas uses ddof=1 (sample standard deviation) 
# by default, whereas NumPy's std method and the StandardScaler
# uses ddof=0 (population standard deviation)

# normalize
ex[2] = (ex[0] - ex[0].min()) / (ex[0].max() - ex[0].min())
ex.columns = ['input', 'standardized', 'normalized']
ex


Out[31]:
input standardized normalized
0 0 -1.46385 0.0
1 1 -0.87831 0.2
2 2 -0.29277 0.4
3 3 0.29277 0.6
4 4 0.87831 0.8
5 5 1.46385 1.0



Selecting meaningful features

...

Sparse solutions with L1-regularization


In [32]:
Image(filename='./images/04_12.png', width=500)


Out[32]:

In [33]:
Image(filename='./images/04_13.png', width=500)


Out[33]:

In [34]:
from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(penalty='l1', C=0.1)
lr.fit(X_train_std, y_train)
print('Training accuracy:', lr.score(X_train_std, y_train))
print('Test accuracy:', lr.score(X_test_std, y_test))


Training accuracy: 0.983870967742
Test accuracy: 0.981481481481

In [35]:
lr.intercept_


Out[35]:
array([-0.38383346, -0.15808134, -0.70036089])

In [36]:
lr.coef_


Out[36]:
array([[ 0.28030813,  0.        ,  0.        , -0.02801734,  0.        ,
         0.        ,  0.71015558,  0.        ,  0.        ,  0.        ,
         0.        ,  0.        ,  1.23621266],
       [-0.64400768, -0.06879233, -0.05720974,  0.        ,  0.        ,
         0.        ,  0.        ,  0.        ,  0.        , -0.92679949,
         0.06011963,  0.        , -0.37101927],
       [ 0.        ,  0.06144394,  0.        ,  0.        ,  0.        ,
         0.        , -0.63694567,  0.        ,  0.        ,  0.49850798,
        -0.35806863, -0.57045459,  0.        ]])

In [37]:
import matplotlib.pyplot as plt

fig = plt.figure()
ax = plt.subplot(111)
    
colors = ['blue', 'green', 'red', 'cyan', 
          'magenta', 'yellow', 'black', 
          'pink', 'lightgreen', 'lightblue', 
          'gray', 'indigo', 'orange']

weights, params = [], []
for c in np.arange(-4., 6.):
    lr = LogisticRegression(penalty='l1', C=10.**c, random_state=0)
    lr.fit(X_train_std, y_train)
    weights.append(lr.coef_[1])
    params.append(10.**c)

weights = np.array(weights)

for column, color in zip(range(weights.shape[1]), colors):
    plt.plot(params, weights[:, column],
             label=df_wine.columns[column + 1],
             color=color)
plt.axhline(0, color='black', linestyle='--', linewidth=3)
plt.xlim([10**(-5), 10**5])
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.xscale('log')
plt.legend(loc='upper left')
ax.legend(loc='upper center', 
          bbox_to_anchor=(1.38, 1.03),
          ncol=1, fancybox=True)
# plt.savefig('./figures/l1_path.png', dpi=300)
plt.show()




Sequential feature selection algorithms


In [38]:
from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.metrics import accuracy_score
if Version(sklearn_version) < '0.18':
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split


class SBS():
    def __init__(self, estimator, k_features, scoring=accuracy_score,
                 test_size=0.25, random_state=1):
        self.scoring = scoring
        self.estimator = clone(estimator)
        self.k_features = k_features
        self.test_size = test_size
        self.random_state = random_state

    def fit(self, X, y):
        
        X_train, X_test, y_train, y_test = \
            train_test_split(X, y, test_size=self.test_size,
                             random_state=self.random_state)

        dim = X_train.shape[1]
        self.indices_ = tuple(range(dim))
        self.subsets_ = [self.indices_]
        score = self._calc_score(X_train, y_train, 
                                 X_test, y_test, self.indices_)
        self.scores_ = [score]

        while dim > self.k_features:
            scores = []
            subsets = []

            for p in combinations(self.indices_, r=dim - 1):
                score = self._calc_score(X_train, y_train, 
                                         X_test, y_test, p)
                scores.append(score)
                subsets.append(p)

            best = np.argmax(scores)
            self.indices_ = subsets[best]
            self.subsets_.append(self.indices_)
            dim -= 1

            self.scores_.append(scores[best])
        self.k_score_ = self.scores_[-1]

        return self

    def transform(self, X):
        return X[:, self.indices_]

    def _calc_score(self, X_train, y_train, X_test, y_test, indices):
        self.estimator.fit(X_train[:, indices], y_train)
        y_pred = self.estimator.predict(X_test[:, indices])
        score = self.scoring(y_test, y_pred)
        return score

In [39]:
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=2)

# selecting features
sbs = SBS(knn, k_features=1)
sbs.fit(X_train_std, y_train)

# plotting performance of feature subsets
k_feat = [len(k) for k in sbs.subsets_]

plt.plot(k_feat, sbs.scores_, marker='o')
plt.ylim([0.7, 1.1])
plt.ylabel('Accuracy')
plt.xlabel('Number of features')
plt.grid()
plt.tight_layout()
# plt.savefig('./sbs.png', dpi=300)
plt.show()



In [40]:
k5 = list(sbs.subsets_[8])
print(df_wine.columns[1:][k5])


Index(['Alcohol', 'Malic acid', 'Alcalinity of ash', 'Hue', 'Proline'], dtype='object')

In [41]:
knn.fit(X_train_std, y_train)
print('Training accuracy:', knn.score(X_train_std, y_train))
print('Test accuracy:', knn.score(X_test_std, y_test))


Training accuracy: 0.983870967742
Test accuracy: 0.944444444444

In [42]:
knn.fit(X_train_std[:, k5], y_train)
print('Training accuracy:', knn.score(X_train_std[:, k5], y_train))
print('Test accuracy:', knn.score(X_test_std[:, k5], y_test))


Training accuracy: 0.959677419355
Test accuracy: 0.962962962963



Assessing Feature Importances with Random Forests


In [43]:
from sklearn.ensemble import RandomForestClassifier

feat_labels = df_wine.columns[1:]

forest = RandomForestClassifier(n_estimators=10000,
                                random_state=0,
                                n_jobs=-1)

forest.fit(X_train, y_train)
importances = forest.feature_importances_

indices = np.argsort(importances)[::-1]

for f in range(X_train.shape[1]):
    print("%2d) %-*s %f" % (f + 1, 30, 
                            feat_labels[indices[f]], 
                            importances[indices[f]]))

plt.title('Feature Importances')
plt.bar(range(X_train.shape[1]), 
        importances[indices],
        color='lightblue', 
        align='center')

plt.xticks(range(X_train.shape[1]), 
           feat_labels[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.tight_layout()
#plt.savefig('./random_forest.png', dpi=300)
plt.show()


 1) Color intensity                0.182483
 2) Proline                        0.158610
 3) Flavanoids                     0.150948
 4) OD280/OD315 of diluted wines   0.131987
 5) Alcohol                        0.106589
 6) Hue                            0.078243
 7) Total phenols                  0.060718
 8) Alcalinity of ash              0.032033
 9) Malic acid                     0.025400
10) Proanthocyanins                0.022351
11) Magnesium                      0.022078
12) Nonflavanoid phenols           0.014645
13) Ash                            0.013916

In [44]:
if Version(sklearn_version) < '0.18':
    X_selected = forest.transform(X_train, threshold=0.15)
else:
    from sklearn.feature_selection import SelectFromModel
    sfm = SelectFromModel(forest, threshold=0.15, prefit=True)
    X_selected = sfm.transform(X_train)

X_selected.shape


Out[44]:
(124, 3)

Now, let's print the 3 features that met the threshold criterion for feature selection that we set earlier (note that this code snippet does not appear in the actual book but was added to this notebook later for illustrative purposes):


In [45]:
for f in range(X_selected.shape[1]):
    print("%2d) %-*s %f" % (f + 1, 30, 
                            feat_labels[indices[f]], 
                            importances[indices[f]]))


 1) Color intensity                0.182483
 2) Proline                        0.158610
 3) Flavanoids                     0.150948



Summary

...