Iteration: 1, named_losses: [('ActivationMax Loss', 0.085303515),
('L-6.0 Norm Loss', 0.019828862),
('TV(2.0) Loss', 0.095951974)], overall loss: 0.201084345579
Iteration: 2, named_losses: [('ActivationMax Loss', -2.3290093),
('L-6.0 Norm Loss', 0.17779008),
('TV(2.0) Loss', 507.10727)], overall loss: 504.956054688
Iteration: 3, named_losses: [('ActivationMax Loss', -128.49548),
('L-6.0 Norm Loss', 0.19667891),
('TV(2.0) Loss', 164.45709)], overall loss: 36.1582946777
Iteration: 4, named_losses: [('ActivationMax Loss', -250.48241),
('L-6.0 Norm Loss', 0.19896419),
('TV(2.0) Loss', 178.49908)], overall loss: -71.784362793
Iteration: 5, named_losses: [('ActivationMax Loss', -355.06989),
('L-6.0 Norm Loss', 0.23281187),
('TV(2.0) Loss', 168.41599)], overall loss: -186.421081543
Iteration: 6, named_losses: [('ActivationMax Loss', -434.47665),
('L-6.0 Norm Loss', 0.27569067),
('TV(2.0) Loss', 198.10806)], overall loss: -236.092895508
Iteration: 7, named_losses: [('ActivationMax Loss', -523.30029),
('L-6.0 Norm Loss', 0.30946341),
('TV(2.0) Loss', 210.7379)], overall loss: -312.252929688
Iteration: 8, named_losses: [('ActivationMax Loss', -589.32751),
('L-6.0 Norm Loss', 0.34706685),
('TV(2.0) Loss', 243.71239)], overall loss: -345.268066406
Iteration: 9, named_losses: [('ActivationMax Loss', -649.27594),
('L-6.0 Norm Loss', 0.37611905),
('TV(2.0) Loss', 256.13412)], overall loss: -392.765716553
Iteration: 10, named_losses: [('ActivationMax Loss', -709.78107),
('L-6.0 Norm Loss', 0.41110787),
('TV(2.0) Loss', 284.26044)], overall loss: -425.10949707
Iteration: 11, named_losses: [('ActivationMax Loss', -761.53046),
('L-6.0 Norm Loss', 0.43992683),
('TV(2.0) Loss', 306.72531)], overall loss: -454.365203857
Iteration: 12, named_losses: [('ActivationMax Loss', -803.29578),
('L-6.0 Norm Loss', 0.46880898),
('TV(2.0) Loss', 327.67728)], overall loss: -475.149688721
Iteration: 13, named_losses: [('ActivationMax Loss', -846.75684),
('L-6.0 Norm Loss', 0.49682248),
('TV(2.0) Loss', 344.90573)], overall loss: -501.354278564
Iteration: 14, named_losses: [('ActivationMax Loss', -883.35626),
('L-6.0 Norm Loss', 0.52348113),
('TV(2.0) Loss', 363.5777)], overall loss: -519.255065918
Iteration: 15, named_losses: [('ActivationMax Loss', -919.09418),
('L-6.0 Norm Loss', 0.5485183),
('TV(2.0) Loss', 378.69067)], overall loss: -539.854980469
Iteration: 16, named_losses: [('ActivationMax Loss', -948.51349),
('L-6.0 Norm Loss', 0.56927013),
('TV(2.0) Loss', 390.0394)], overall loss: -557.904785156
Iteration: 17, named_losses: [('ActivationMax Loss', -978.81732),
('L-6.0 Norm Loss', 0.59408391),
('TV(2.0) Loss', 406.41376)], overall loss: -571.809509277
Iteration: 18, named_losses: [('ActivationMax Loss', -1010.2624),
('L-6.0 Norm Loss', 0.61176264),
('TV(2.0) Loss', 424.86453)], overall loss: -584.786132812
Iteration: 19, named_losses: [('ActivationMax Loss', -1032.5134),
('L-6.0 Norm Loss', 0.63450885),
('TV(2.0) Loss', 435.95856)], overall loss: -595.920349121
Iteration: 20, named_losses: [('ActivationMax Loss', -1055.4211),
('L-6.0 Norm Loss', 0.64917922),
('TV(2.0) Loss', 447.13791)], overall loss: -607.634033203
Iteration: 21, named_losses: [('ActivationMax Loss', -1078.2205),
('L-6.0 Norm Loss', 0.67029834),
('TV(2.0) Loss', 460.73138)], overall loss: -616.818786621
Iteration: 22, named_losses: [('ActivationMax Loss', -1096.8605),
('L-6.0 Norm Loss', 0.68686134),
('TV(2.0) Loss', 468.72369)], overall loss: -627.449890137
Iteration: 23, named_losses: [('ActivationMax Loss', -1115.5505),
('L-6.0 Norm Loss', 0.70358962),
('TV(2.0) Loss', 477.83783)], overall loss: -637.009094238
Iteration: 24, named_losses: [('ActivationMax Loss', -1135.0172),
('L-6.0 Norm Loss', 0.72281784),
('TV(2.0) Loss', 488.59711)], overall loss: -645.69732666
Iteration: 25, named_losses: [('ActivationMax Loss', -1152.8055),
('L-6.0 Norm Loss', 0.73808521),
('TV(2.0) Loss', 493.71191)], overall loss: -658.35559082
Iteration: 26, named_losses: [('ActivationMax Loss', -1169.7035),
('L-6.0 Norm Loss', 0.75386697),
('TV(2.0) Loss', 499.82452)], overall loss: -669.125061035
Iteration: 27, named_losses: [('ActivationMax Loss', -1189.5547),
('L-6.0 Norm Loss', 0.77207923),
('TV(2.0) Loss', 516.74023)], overall loss: -672.042358398
Iteration: 28, named_losses: [('ActivationMax Loss', -1206.5782),
('L-6.0 Norm Loss', 0.7868582),
('TV(2.0) Loss', 521.85266)], overall loss: -683.938720703
Iteration: 29, named_losses: [('ActivationMax Loss', -1226.3325),
('L-6.0 Norm Loss', 0.80321062),
('TV(2.0) Loss', 536.8913)], overall loss: -688.638000488
Iteration: 30, named_losses: [('ActivationMax Loss', -1243.972),
('L-6.0 Norm Loss', 0.81793976),
('TV(2.0) Loss', 539.8042)], overall loss: -703.349853516
Iteration: 31, named_losses: [('ActivationMax Loss', -1262.2374),
('L-6.0 Norm Loss', 0.83369249),
('TV(2.0) Loss', 555.77899)], overall loss: -705.624694824
Iteration: 32, named_losses: [('ActivationMax Loss', -1277.142),
('L-6.0 Norm Loss', 0.84892559),
('TV(2.0) Loss', 559.75134)], overall loss: -716.541748047
Iteration: 33, named_losses: [('ActivationMax Loss', -1291.3621),
('L-6.0 Norm Loss', 0.86305672),
('TV(2.0) Loss', 571.33044)], overall loss: -719.168579102
Iteration: 34, named_losses: [('ActivationMax Loss', -1304.9154),
('L-6.0 Norm Loss', 0.87694514),
('TV(2.0) Loss', 578.43042)], overall loss: -725.608032227
Iteration: 35, named_losses: [('ActivationMax Loss', -1318.2659),
('L-6.0 Norm Loss', 0.89181656),
('TV(2.0) Loss', 591.61877)], overall loss: -725.755249023
Iteration: 36, named_losses: [('ActivationMax Loss', -1329.4354),
('L-6.0 Norm Loss', 0.90528834),
('TV(2.0) Loss', 595.05951)], overall loss: -733.47064209
Iteration: 37, named_losses: [('ActivationMax Loss', -1341.7084),
('L-6.0 Norm Loss', 0.91941857),
('TV(2.0) Loss', 605.28784)], overall loss: -735.501098633
Iteration: 38, named_losses: [('ActivationMax Loss', -1354.1248),
('L-6.0 Norm Loss', 0.93217278),
('TV(2.0) Loss', 612.47931)], overall loss: -740.713317871
Iteration: 39, named_losses: [('ActivationMax Loss', -1364.4468),
('L-6.0 Norm Loss', 0.94575441),
('TV(2.0) Loss', 619.2569)], overall loss: -744.24407959
Iteration: 40, named_losses: [('ActivationMax Loss', -1374.3206),
('L-6.0 Norm Loss', 0.9577564),
('TV(2.0) Loss', 625.97729)], overall loss: -747.385498047
Iteration: 41, named_losses: [('ActivationMax Loss', -1384.3914),
('L-6.0 Norm Loss', 0.96838021),
('TV(2.0) Loss', 633.25616)], overall loss: -750.166809082
Iteration: 42, named_losses: [('ActivationMax Loss', -1393.1029),
('L-6.0 Norm Loss', 0.98039478),
('TV(2.0) Loss', 639.09497)], overall loss: -753.027587891
Iteration: 43, named_losses: [('ActivationMax Loss', -1402.049),
('L-6.0 Norm Loss', 0.99183488),
('TV(2.0) Loss', 644.44427)], overall loss: -756.612854004
Iteration: 44, named_losses: [('ActivationMax Loss', -1410.5962),
('L-6.0 Norm Loss', 1.0034488),
('TV(2.0) Loss', 651.58691)], overall loss: -758.005859375
Iteration: 45, named_losses: [('ActivationMax Loss', -1419.7144),
('L-6.0 Norm Loss', 1.0143936),
('TV(2.0) Loss', 658.54822)], overall loss: -760.151733398
Iteration: 46, named_losses: [('ActivationMax Loss', -1427.2026),
('L-6.0 Norm Loss', 1.0241909),
('TV(2.0) Loss', 662.922)], overall loss: -763.256469727
Iteration: 47, named_losses: [('ActivationMax Loss', -1435.6279),
('L-6.0 Norm Loss', 1.0342484),
('TV(2.0) Loss', 667.56097)], overall loss: -767.032653809
Iteration: 48, named_losses: [('ActivationMax Loss', -1440.479),
('L-6.0 Norm Loss', 1.0420389),
('TV(2.0) Loss', 672.19409)], overall loss: -767.242919922
Iteration: 49, named_losses: [('ActivationMax Loss', -1453.1812),
('L-6.0 Norm Loss', 1.0515953),
('TV(2.0) Loss', 680.70709)], overall loss: -771.422424316
Iteration: 50, named_losses: [('ActivationMax Loss', -1454.2151),
('L-6.0 Norm Loss', 1.0597379),
('TV(2.0) Loss', 682.62335)], overall loss: -770.532043457
Iteration: 51, named_losses: [('ActivationMax Loss', -1468.5298),
('L-6.0 Norm Loss', 1.0692028),
('TV(2.0) Loss', 692.5365)], overall loss: -774.924072266
Iteration: 52, named_losses: [('ActivationMax Loss', -1468.5466),
('L-6.0 Norm Loss', 1.0780802),
('TV(2.0) Loss', 694.88562)], overall loss: -772.582885742
Iteration: 53, named_losses: [('ActivationMax Loss', -1478.1926),
('L-6.0 Norm Loss', 1.0857446),
('TV(2.0) Loss', 699.60638)], overall loss: -777.500549316
Iteration: 54, named_losses: [('ActivationMax Loss', -1483.5609),
('L-6.0 Norm Loss', 1.0934379),
('TV(2.0) Loss', 706.73547)], overall loss: -775.732055664
Iteration: 55, named_losses: [('ActivationMax Loss', -1491.7773),
('L-6.0 Norm Loss', 1.1018604),
('TV(2.0) Loss', 710.49097)], overall loss: -780.184570312
Iteration: 56, named_losses: [('ActivationMax Loss', -1496.1121),
('L-6.0 Norm Loss', 1.1094059),
('TV(2.0) Loss', 716.18457)], overall loss: -778.818115234
Iteration: 57, named_losses: [('ActivationMax Loss', -1503.3049),
('L-6.0 Norm Loss', 1.1176937),
('TV(2.0) Loss', 719.49158)], overall loss: -782.695678711
Iteration: 58, named_losses: [('ActivationMax Loss', -1507.1075),
('L-6.0 Norm Loss', 1.1252179),
('TV(2.0) Loss', 723.2171)], overall loss: -782.765197754
Iteration: 59, named_losses: [('ActivationMax Loss', -1508.6431),
('L-6.0 Norm Loss', 1.1337999),
('TV(2.0) Loss', 722.63678)], overall loss: -784.872497559
Iteration: 60, named_losses: [('ActivationMax Loss', -1514.7773),
('L-6.0 Norm Loss', 1.1402849),
('TV(2.0) Loss', 728.61115)], overall loss: -785.025939941
Iteration: 61, named_losses: [('ActivationMax Loss', -1514.7411),
('L-6.0 Norm Loss', 1.1487488),
('TV(2.0) Loss', 727.47565)], overall loss: -786.116638184
Iteration: 62, named_losses: [('ActivationMax Loss', -1521.7354),
('L-6.0 Norm Loss', 1.1555879),
('TV(2.0) Loss', 731.41626)], overall loss: -789.163452148
Iteration: 63, named_losses: [('ActivationMax Loss', -1522.7675),
('L-6.0 Norm Loss', 1.1635603),
('TV(2.0) Loss', 733.62488)], overall loss: -787.979003906
Iteration: 64, named_losses: [('ActivationMax Loss', -1529.7563),
('L-6.0 Norm Loss', 1.1674472),
('TV(2.0) Loss', 736.68823)], overall loss: -791.900634766
Iteration: 65, named_losses: [('ActivationMax Loss', -1531.0713),
('L-6.0 Norm Loss', 1.1751125),
('TV(2.0) Loss', 739.92639)], overall loss: -789.969726562
Iteration: 66, named_losses: [('ActivationMax Loss', -1534.9249),
('L-6.0 Norm Loss', 1.1804783),
('TV(2.0) Loss', 740.112)], overall loss: -793.632507324
Iteration: 67, named_losses: [('ActivationMax Loss', -1535.5088),
('L-6.0 Norm Loss', 1.1873333),
('TV(2.0) Loss', 741.09711)], overall loss: -793.224304199
Iteration: 68, named_losses: [('ActivationMax Loss', -1539.807),
('L-6.0 Norm Loss', 1.1929805),
('TV(2.0) Loss', 742.85437)], overall loss: -795.759643555
Iteration: 69, named_losses: [('ActivationMax Loss', -1537.9623),
('L-6.0 Norm Loss', 1.1999267),
('TV(2.0) Loss', 742.83746)], overall loss: -793.924865723
Iteration: 70, named_losses: [('ActivationMax Loss', -1549.0408),
('L-6.0 Norm Loss', 1.2060388),
('TV(2.0) Loss', 749.69873)], overall loss: -798.135986328
Iteration: 71, named_losses: [('ActivationMax Loss', -1549.3425),
('L-6.0 Norm Loss', 1.2124674),
('TV(2.0) Loss', 750.94574)], overall loss: -797.184265137
Iteration: 72, named_losses: [('ActivationMax Loss', -1553.8987),
('L-6.0 Norm Loss', 1.21632),
('TV(2.0) Loss', 752.06598)], overall loss: -800.616394043
Iteration: 73, named_losses: [('ActivationMax Loss', -1554.4263),
('L-6.0 Norm Loss', 1.2229993),
('TV(2.0) Loss', 754.32281)], overall loss: -798.880432129
Iteration: 74, named_losses: [('ActivationMax Loss', -1559.6265),
('L-6.0 Norm Loss', 1.2293643),
('TV(2.0) Loss', 758.35571)], overall loss: -800.041381836
Iteration: 75, named_losses: [('ActivationMax Loss', -1561.2106),
('L-6.0 Norm Loss', 1.2329044),
('TV(2.0) Loss', 760.01758)], overall loss: -799.960083008
Iteration: 76, named_losses: [('ActivationMax Loss', -1562.5452),
('L-6.0 Norm Loss', 1.2385361),
('TV(2.0) Loss', 759.76331)], overall loss: -801.543334961
Iteration: 77, named_losses: [('ActivationMax Loss', -1564.2513),
('L-6.0 Norm Loss', 1.2413583),
('TV(2.0) Loss', 760.64935)], overall loss: -802.360656738
Iteration: 78, named_losses: [('ActivationMax Loss', -1566.9346),
('L-6.0 Norm Loss', 1.2466581),
('TV(2.0) Loss', 764.04144)], overall loss: -801.64642334
Iteration: 79, named_losses: [('ActivationMax Loss', -1570.8954),
('L-6.0 Norm Loss', 1.2509888),
('TV(2.0) Loss', 766.50098)], overall loss: -803.143432617
Iteration: 80, named_losses: [('ActivationMax Loss', -1572.2623),
('L-6.0 Norm Loss', 1.2554729),
('TV(2.0) Loss', 766.65845)], overall loss: -804.348388672
Iteration: 81, named_losses: [('ActivationMax Loss', -1574.7688),
('L-6.0 Norm Loss', 1.2608629),
('TV(2.0) Loss', 768.88452)], overall loss: -804.623413086
Iteration: 82, named_losses: [('ActivationMax Loss', -1574.8457),
('L-6.0 Norm Loss', 1.264998),
('TV(2.0) Loss', 767.55579)], overall loss: -806.024902344
Iteration: 83, named_losses: [('ActivationMax Loss', -1578.4631),
('L-6.0 Norm Loss', 1.2702675),
('TV(2.0) Loss', 770.93079)], overall loss: -806.262084961
Iteration: 84, named_losses: [('ActivationMax Loss', -1579.1116),
('L-6.0 Norm Loss', 1.2734473),
('TV(2.0) Loss', 770.62146)], overall loss: -807.216674805
Iteration: 85, named_losses: [('ActivationMax Loss', -1581.9132),
('L-6.0 Norm Loss', 1.2792308),
('TV(2.0) Loss', 772.18756)], overall loss: -808.446472168
Iteration: 86, named_losses: [('ActivationMax Loss', -1579.4325),
('L-6.0 Norm Loss', 1.2830144),
('TV(2.0) Loss', 766.79077)], overall loss: -811.358764648
Iteration: 87, named_losses: [('ActivationMax Loss', -1585.8596),
('L-6.0 Norm Loss', 1.2859445),
('TV(2.0) Loss', 775.53821)], overall loss: -809.035522461
Iteration: 88, named_losses: [('ActivationMax Loss', -1585.7672),
('L-6.0 Norm Loss', 1.2900306),
('TV(2.0) Loss', 774.06342)], overall loss: -810.413757324
Iteration: 89, named_losses: [('ActivationMax Loss', -1591.1372),
('L-6.0 Norm Loss', 1.2948806),
('TV(2.0) Loss', 778.63391)], overall loss: -811.208374023
Iteration: 90, named_losses: [('ActivationMax Loss', -1590.0701),
('L-6.0 Norm Loss', 1.2955327),
('TV(2.0) Loss', 777.77234)], overall loss: -811.002197266
Iteration: 91, named_losses: [('ActivationMax Loss', -1590.9371),
('L-6.0 Norm Loss', 1.3006396),
('TV(2.0) Loss', 777.98926)], overall loss: -811.647216797
Iteration: 92, named_losses: [('ActivationMax Loss', -1597.2491),
('L-6.0 Norm Loss', 1.3033614),
('TV(2.0) Loss', 783.2879)], overall loss: -812.657897949
Iteration: 93, named_losses: [('ActivationMax Loss', -1593.3665),
('L-6.0 Norm Loss', 1.3075004),
('TV(2.0) Loss', 779.44653)], overall loss: -812.612426758
Iteration: 94, named_losses: [('ActivationMax Loss', -1597.2029),
('L-6.0 Norm Loss', 1.3099935),
('TV(2.0) Loss', 781.82526)], overall loss: -814.067687988
Iteration: 95, named_losses: [('ActivationMax Loss', -1597.9543),
('L-6.0 Norm Loss', 1.3138223),
('TV(2.0) Loss', 783.27612)], overall loss: -813.364379883
Iteration: 96, named_losses: [('ActivationMax Loss', -1600.9514),
('L-6.0 Norm Loss', 1.3189675),
('TV(2.0) Loss', 784.29456)], overall loss: -815.337890625
Iteration: 97, named_losses: [('ActivationMax Loss', -1603.2629),
('L-6.0 Norm Loss', 1.3227088),
('TV(2.0) Loss', 787.86951)], overall loss: -814.070678711
Iteration: 98, named_losses: [('ActivationMax Loss', -1603.4062),
('L-6.0 Norm Loss', 1.3246108),
('TV(2.0) Loss', 786.18884)], overall loss: -815.892822266
Iteration: 99, named_losses: [('ActivationMax Loss', -1602.4215),
('L-6.0 Norm Loss', 1.3267232),
('TV(2.0) Loss', 784.94574)], overall loss: -816.148986816
Iteration: 100, named_losses: [('ActivationMax Loss', -1606.3367),
('L-6.0 Norm Loss', 1.3313514),
('TV(2.0) Loss', 788.65411)], overall loss: -816.351257324
Iteration: 101, named_losses: [('ActivationMax Loss', -1605.1202),
('L-6.0 Norm Loss', 1.3336935),
('TV(2.0) Loss', 787.86621)], overall loss: -815.920288086
Iteration: 102, named_losses: [('ActivationMax Loss', -1609.257),
('L-6.0 Norm Loss', 1.3371928),
('TV(2.0) Loss', 790.25415)], overall loss: -817.665649414
Iteration: 103, named_losses: [('ActivationMax Loss', -1610.245),
('L-6.0 Norm Loss', 1.3413918),
('TV(2.0) Loss', 791.96606)], overall loss: -816.9375
Iteration: 104, named_losses: [('ActivationMax Loss', -1610.9143),
('L-6.0 Norm Loss', 1.3415542),
('TV(2.0) Loss', 789.74146)], overall loss: -819.831298828
Iteration: 105, named_losses: [('ActivationMax Loss', -1609.8514),
('L-6.0 Norm Loss', 1.3457475),
('TV(2.0) Loss', 789.99353)], overall loss: -818.512207031
Iteration: 106, named_losses: [('ActivationMax Loss', -1612.2958),
('L-6.0 Norm Loss', 1.3498583),
('TV(2.0) Loss', 789.27185)], overall loss: -821.674072266
Iteration: 107, named_losses: [('ActivationMax Loss', -1613.5688),
('L-6.0 Norm Loss', 1.3565289),
('TV(2.0) Loss', 793.34521)], overall loss: -818.86706543
Iteration: 108, named_losses: [('ActivationMax Loss', -1617.8153),
('L-6.0 Norm Loss', 1.358252),
('TV(2.0) Loss', 794.26929)], overall loss: -822.187744141
Iteration: 109, named_losses: [('ActivationMax Loss', -1617.1315),
('L-6.0 Norm Loss', 1.3626406),
('TV(2.0) Loss', 794.89624)], overall loss: -820.872558594
Iteration: 110, named_losses: [('ActivationMax Loss', -1619.2756),
('L-6.0 Norm Loss', 1.3654678),
('TV(2.0) Loss', 794.74115)], overall loss: -823.169006348
Iteration: 111, named_losses: [('ActivationMax Loss', -1620.2999),
('L-6.0 Norm Loss', 1.368789),
('TV(2.0) Loss', 797.3844)], overall loss: -821.54675293
Iteration: 112, named_losses: [('ActivationMax Loss', -1619.2432),
('L-6.0 Norm Loss', 1.3725339),
('TV(2.0) Loss', 793.66309)], overall loss: -824.207519531
Iteration: 113, named_losses: [('ActivationMax Loss', -1625.923),
('L-6.0 Norm Loss', 1.3758172),
('TV(2.0) Loss', 800.75488)], overall loss: -823.792236328
Iteration: 114, named_losses: [('ActivationMax Loss', -1622.631),
('L-6.0 Norm Loss', 1.3799908),
('TV(2.0) Loss', 797.35974)], overall loss: -823.891235352
Iteration: 115, named_losses: [('ActivationMax Loss', -1630.325),
('L-6.0 Norm Loss', 1.384307),
('TV(2.0) Loss', 806.6814)], overall loss: -822.259277344
Iteration: 116, named_losses: [('ActivationMax Loss', -1627.0356),
('L-6.0 Norm Loss', 1.3886331),
('TV(2.0) Loss', 802.25623)], overall loss: -823.39074707
Iteration: 117, named_losses: [('ActivationMax Loss', -1632.6683),
('L-6.0 Norm Loss', 1.3907378),
('TV(2.0) Loss', 809.20844)], overall loss: -822.069152832
Iteration: 118, named_losses: [('ActivationMax Loss', -1632.0132),
('L-6.0 Norm Loss', 1.3947749),
('TV(2.0) Loss', 806.38666)], overall loss: -824.231750488
Iteration: 119, named_losses: [('ActivationMax Loss', -1633.7933),
('L-6.0 Norm Loss', 1.3970679),
('TV(2.0) Loss', 809.47327)], overall loss: -822.922973633
Iteration: 120, named_losses: [('ActivationMax Loss', -1631.33),
('L-6.0 Norm Loss', 1.4000779),
('TV(2.0) Loss', 804.59418)], overall loss: -825.335754395
Iteration: 121, named_losses: [('ActivationMax Loss', -1638.6511),
('L-6.0 Norm Loss', 1.4029664),
('TV(2.0) Loss', 812.93854)], overall loss: -824.309631348
Iteration: 122, named_losses: [('ActivationMax Loss', -1631.8582),
('L-6.0 Norm Loss', 1.4053441),
('TV(2.0) Loss', 804.75452)], overall loss: -825.698242188
Iteration: 123, named_losses: [('ActivationMax Loss', -1638.329),
('L-6.0 Norm Loss', 1.4088998),
('TV(2.0) Loss', 811.19293)], overall loss: -825.727111816
Iteration: 124, named_losses: [('ActivationMax Loss', -1632.4836),
('L-6.0 Norm Loss', 1.4110554),
('TV(2.0) Loss', 804.57092)], overall loss: -826.501708984
Iteration: 125, named_losses: [('ActivationMax Loss', -1639.8102),
('L-6.0 Norm Loss', 1.4141355),
('TV(2.0) Loss', 812.0838)], overall loss: -826.312194824
Iteration: 126, named_losses: [('ActivationMax Loss', -1630.1312),
('L-6.0 Norm Loss', 1.4141332),
('TV(2.0) Loss', 800.64581)], overall loss: -828.071228027
Iteration: 127, named_losses: [('ActivationMax Loss', -1639.1195),
('L-6.0 Norm Loss', 1.4192623),
('TV(2.0) Loss', 809.91083)], overall loss: -827.789367676
Iteration: 128, named_losses: [('ActivationMax Loss', -1630.7975),
('L-6.0 Norm Loss', 1.4200757),
('TV(2.0) Loss', 800.08356)], overall loss: -829.293884277
Iteration: 129, named_losses: [('ActivationMax Loss', -1638.1284),
('L-6.0 Norm Loss', 1.4252733),
('TV(2.0) Loss', 809.07318)], overall loss: -827.629943848
Iteration: 130, named_losses: [('ActivationMax Loss', -1636.0492),
('L-6.0 Norm Loss', 1.4285793),
('TV(2.0) Loss', 803.84949)], overall loss: -830.771118164
Iteration: 131, named_losses: [('ActivationMax Loss', -1641.9642),
('L-6.0 Norm Loss', 1.433162),
('TV(2.0) Loss', 811.50299)], overall loss: -829.028137207
Iteration: 132, named_losses: [('ActivationMax Loss', -1639.944),
('L-6.0 Norm Loss', 1.4367878),
('TV(2.0) Loss', 807.71741)], overall loss: -830.789794922
Iteration: 133, named_losses: [('ActivationMax Loss', -1642.401),
('L-6.0 Norm Loss', 1.4381592),
('TV(2.0) Loss', 811.63275)], overall loss: -829.33013916
Iteration: 134, named_losses: [('ActivationMax Loss', -1643.0408),
('L-6.0 Norm Loss', 1.442253),
('TV(2.0) Loss', 810.08728)], overall loss: -831.511230469
Iteration: 135, named_losses: [('ActivationMax Loss', -1647.0085),
('L-6.0 Norm Loss', 1.444943),
('TV(2.0) Loss', 815.15967)], overall loss: -830.403930664
Iteration: 136, named_losses: [('ActivationMax Loss', -1644.9188),
('L-6.0 Norm Loss', 1.4477811),
('TV(2.0) Loss', 811.31506)], overall loss: -832.156005859
Iteration: 137, named_losses: [('ActivationMax Loss', -1653.4288),
('L-6.0 Norm Loss', 1.4509344),
('TV(2.0) Loss', 821.15198)], overall loss: -830.825927734
Iteration: 138, named_losses: [('ActivationMax Loss', -1648.1528),
('L-6.0 Norm Loss', 1.4527802),
('TV(2.0) Loss', 814.87396)], overall loss: -831.82611084
Iteration: 139, named_losses: [('ActivationMax Loss', -1649.7593),
('L-6.0 Norm Loss', 1.4559247),
('TV(2.0) Loss', 817.54858)], overall loss: -830.754760742
Iteration: 140, named_losses: [('ActivationMax Loss', -1651.0073),
('L-6.0 Norm Loss', 1.4594543),
('TV(2.0) Loss', 816.99554)], overall loss: -832.552307129
Iteration: 141, named_losses: [('ActivationMax Loss', -1652.6647),
('L-6.0 Norm Loss', 1.4621137),
('TV(2.0) Loss', 819.40613)], overall loss: -831.796386719
Iteration: 142, named_losses: [('ActivationMax Loss', -1654.1587),
('L-6.0 Norm Loss', 1.4648318),
('TV(2.0) Loss', 820.21576)], overall loss: -832.478088379
Iteration: 143, named_losses: [('ActivationMax Loss', -1651.4489),
('L-6.0 Norm Loss', 1.465472),
('TV(2.0) Loss', 812.49847)], overall loss: -837.484924316
Iteration: 144, named_losses: [('ActivationMax Loss', -1655.8921),
('L-6.0 Norm Loss', 1.4706283),
('TV(2.0) Loss', 819.5379)], overall loss: -834.883605957
Iteration: 145, named_losses: [('ActivationMax Loss', -1651.3011),
('L-6.0 Norm Loss', 1.4713544),
('TV(2.0) Loss', 814.84924)], overall loss: -834.98059082
Iteration: 146, named_losses: [('ActivationMax Loss', -1656.283),
('L-6.0 Norm Loss', 1.4738773),
('TV(2.0) Loss', 823.04236)], overall loss: -831.766723633
Iteration: 147, named_losses: [('ActivationMax Loss', -1660.2869),
('L-6.0 Norm Loss', 1.4773164),
('TV(2.0) Loss', 824.23651)], overall loss: -834.573059082
Iteration: 148, named_losses: [('ActivationMax Loss', -1662.1096),
('L-6.0 Norm Loss', 1.4793681),
('TV(2.0) Loss', 828.23236)], overall loss: -832.397888184
Iteration: 149, named_losses: [('ActivationMax Loss', -1661.8433),
('L-6.0 Norm Loss', 1.4821515),
('TV(2.0) Loss', 825.2392)], overall loss: -835.121887207
Iteration: 150, named_losses: [('ActivationMax Loss', -1665.4824),
('L-6.0 Norm Loss', 1.4861856),
('TV(2.0) Loss', 829.73688)], overall loss: -834.259338379
Iteration: 151, named_losses: [('ActivationMax Loss', -1664.7596),
('L-6.0 Norm Loss', 1.4876471),
('TV(2.0) Loss', 826.73108)], overall loss: -836.540893555
Iteration: 152, named_losses: [('ActivationMax Loss', -1666.2804),
('L-6.0 Norm Loss', 1.4919786),
('TV(2.0) Loss', 830.87958)], overall loss: -833.908874512
Iteration: 153, named_losses: [('ActivationMax Loss', -1668.1177),
('L-6.0 Norm Loss', 1.4925706),
('TV(2.0) Loss', 830.95911)], overall loss: -835.666015625
Iteration: 154, named_losses: [('ActivationMax Loss', -1668.7156),
('L-6.0 Norm Loss', 1.4961685),
('TV(2.0) Loss', 831.15045)], overall loss: -836.068908691
Iteration: 155, named_losses: [('ActivationMax Loss', -1669.6495),
('L-6.0 Norm Loss', 1.4984686),
('TV(2.0) Loss', 831.70325)], overall loss: -836.447875977
Iteration: 156, named_losses: [('ActivationMax Loss', -1673.0961),
('L-6.0 Norm Loss', 1.5010495),
('TV(2.0) Loss', 835.07239)], overall loss: -836.522583008
Iteration: 157, named_losses: [('ActivationMax Loss', -1672.6519),
('L-6.0 Norm Loss', 1.5066335),
('TV(2.0) Loss', 835.20679)], overall loss: -835.938476562
Iteration: 158, named_losses: [('ActivationMax Loss', -1677.0101),
('L-6.0 Norm Loss', 1.5054392),
('TV(2.0) Loss', 837.4469)], overall loss: -838.057739258
Iteration: 159, named_losses: [('ActivationMax Loss', -1675.916),
('L-6.0 Norm Loss', 1.5089097),
('TV(2.0) Loss', 836.17157)], overall loss: -838.235534668
Iteration: 160, named_losses: [('ActivationMax Loss', -1674.426),
('L-6.0 Norm Loss', 1.5099328),
('TV(2.0) Loss', 834.57648)], overall loss: -838.339660645
Iteration: 161, named_losses: [('ActivationMax Loss', -1676.6719),
('L-6.0 Norm Loss', 1.5128522),
('TV(2.0) Loss', 836.09076)], overall loss: -839.06829834
Iteration: 162, named_losses: [('ActivationMax Loss', -1676.5416),
('L-6.0 Norm Loss', 1.5148972),
('TV(2.0) Loss', 835.69391)], overall loss: -839.332824707
Iteration: 163, named_losses: [('ActivationMax Loss', -1676.1887),
('L-6.0 Norm Loss', 1.516475),
('TV(2.0) Loss', 834.33459)], overall loss: -840.337646484
Iteration: 164, named_losses: [('ActivationMax Loss', -1677.428),
('L-6.0 Norm Loss', 1.5198225),
('TV(2.0) Loss', 835.4469)], overall loss: -840.461303711
Iteration: 165, named_losses: [('ActivationMax Loss', -1677.0521),
('L-6.0 Norm Loss', 1.5217334),
('TV(2.0) Loss', 833.99994)], overall loss: -841.530456543
Iteration: 166, named_losses: [('ActivationMax Loss', -1680.4186),
('L-6.0 Norm Loss', 1.527281),
('TV(2.0) Loss', 839.37067)], overall loss: -839.520690918
Iteration: 167, named_losses: [('ActivationMax Loss', -1682.5245),
('L-6.0 Norm Loss', 1.5286567),
('TV(2.0) Loss', 839.15784)], overall loss: -841.838012695
Iteration: 168, named_losses: [('ActivationMax Loss', -1679.6903),
('L-6.0 Norm Loss', 1.5303226),
('TV(2.0) Loss', 837.42731)], overall loss: -840.732727051
Iteration: 169, named_losses: [('ActivationMax Loss', -1684.0806),
('L-6.0 Norm Loss', 1.5321445),
('TV(2.0) Loss', 840.0152)], overall loss: -842.53326416
Iteration: 170, named_losses: [('ActivationMax Loss', -1681.1489),
('L-6.0 Norm Loss', 1.5356567),
('TV(2.0) Loss', 837.11945)], overall loss: -842.493835449
Iteration: 171, named_losses: [('ActivationMax Loss', -1683.8822),
('L-6.0 Norm Loss', 1.5385299),
('TV(2.0) Loss', 839.58362)], overall loss: -842.760009766
Iteration: 172, named_losses: [('ActivationMax Loss', -1680.66),
('L-6.0 Norm Loss', 1.5389018),
('TV(2.0) Loss', 833.68958)], overall loss: -845.431518555
Iteration: 173, named_losses: [('ActivationMax Loss', -1684.0814),
('L-6.0 Norm Loss', 1.5411844),
('TV(2.0) Loss', 839.33081)], overall loss: -843.209472656
Iteration: 174, named_losses: [('ActivationMax Loss', -1681.9932),
('L-6.0 Norm Loss', 1.5433018),
('TV(2.0) Loss', 837.27722)], overall loss: -843.172607422
Iteration: 175, named_losses: [('ActivationMax Loss', -1686.0037),
('L-6.0 Norm Loss', 1.5452924),
('TV(2.0) Loss', 841.27289)], overall loss: -843.18548584
Iteration: 176, named_losses: [('ActivationMax Loss', -1687.5237),
('L-6.0 Norm Loss', 1.5497506),
('TV(2.0) Loss', 845.2395)], overall loss: -840.734375
Iteration: 177, named_losses: [('ActivationMax Loss', -1692.7676),
('L-6.0 Norm Loss', 1.5519809),
('TV(2.0) Loss', 847.61469)], overall loss: -843.600891113
Iteration: 178, named_losses: [('ActivationMax Loss', -1691.171),
('L-6.0 Norm Loss', 1.5546336),
('TV(2.0) Loss', 848.039)], overall loss: -841.577331543
Iteration: 179, named_losses: [('ActivationMax Loss', -1692.5399),
('L-6.0 Norm Loss', 1.5569656),
('TV(2.0) Loss', 846.35913)], overall loss: -844.623779297
Iteration: 180, named_losses: [('ActivationMax Loss', -1690.7684),
('L-6.0 Norm Loss', 1.558495),
('TV(2.0) Loss', 846.54626)], overall loss: -842.663696289
Iteration: 181, named_losses: [('ActivationMax Loss', -1694.9828),
('L-6.0 Norm Loss', 1.558827),
('TV(2.0) Loss', 848.42737)], overall loss: -844.996582031
Iteration: 182, named_losses: [('ActivationMax Loss', -1693.8423),
('L-6.0 Norm Loss', 1.5600398),
('TV(2.0) Loss', 847.75787)], overall loss: -844.524353027
Iteration: 183, named_losses: [('ActivationMax Loss', -1692.3008),
('L-6.0 Norm Loss', 1.5624027),
('TV(2.0) Loss', 846.34583)], overall loss: -844.392578125
Iteration: 184, named_losses: [('ActivationMax Loss', -1690.6182),
('L-6.0 Norm Loss', 1.5639281),
('TV(2.0) Loss', 845.07623)], overall loss: -843.977966309
Iteration: 185, named_losses: [('ActivationMax Loss', -1694.6195),
('L-6.0 Norm Loss', 1.5679384),
('TV(2.0) Loss', 848.89496)], overall loss: -844.156555176
Iteration: 186, named_losses: [('ActivationMax Loss', -1694.5382),
('L-6.0 Norm Loss', 1.5688758),
('TV(2.0) Loss', 849.05872)], overall loss: -843.910644531
Iteration: 187, named_losses: [('ActivationMax Loss', -1700.241),
('L-6.0 Norm Loss', 1.5718434),
('TV(2.0) Loss', 853.30139)], overall loss: -845.367675781
Iteration: 188, named_losses: [('ActivationMax Loss', -1694.207),
('L-6.0 Norm Loss', 1.5731733),
('TV(2.0) Loss', 848.63531)], overall loss: -843.998596191
Iteration: 189, named_losses: [('ActivationMax Loss', -1702.188),
('L-6.0 Norm Loss', 1.5767503),
('TV(2.0) Loss', 855.16302)], overall loss: -845.448181152
Iteration: 190, named_losses: [('ActivationMax Loss', -1696.559),
('L-6.0 Norm Loss', 1.5781298),
('TV(2.0) Loss', 848.68616)], overall loss: -846.294677734
Iteration: 191, named_losses: [('ActivationMax Loss', -1698.0985),
('L-6.0 Norm Loss', 1.5782369),
('TV(2.0) Loss', 849.00452)], overall loss: -847.51574707
Iteration: 192, named_losses: [('ActivationMax Loss', -1695.0345),
('L-6.0 Norm Loss', 1.5810226),
('TV(2.0) Loss', 846.17896)], overall loss: -847.274536133
Iteration: 193, named_losses: [('ActivationMax Loss', -1698.2462),
('L-6.0 Norm Loss', 1.5834887),
('TV(2.0) Loss', 846.41547)], overall loss: -850.247253418
Iteration: 194, named_losses: [('ActivationMax Loss', -1698.2938),
('L-6.0 Norm Loss', 1.5867252),
('TV(2.0) Loss', 846.93781)], overall loss: -849.769348145
Iteration: 195, named_losses: [('ActivationMax Loss', -1700.386),
('L-6.0 Norm Loss', 1.5881807),
('TV(2.0) Loss', 848.39166)], overall loss: -850.406188965
Iteration: 196, named_losses: [('ActivationMax Loss', -1703.4745),
('L-6.0 Norm Loss', 1.5905124),
('TV(2.0) Loss', 854.04553)], overall loss: -847.838500977
Iteration: 197, named_losses: [('ActivationMax Loss', -1706.6498),
('L-6.0 Norm Loss', 1.5927349),
('TV(2.0) Loss', 856.89001)], overall loss: -848.166992188
Iteration: 198, named_losses: [('ActivationMax Loss', -1710.0554),
('L-6.0 Norm Loss', 1.5939628),
('TV(2.0) Loss', 859.12634)], overall loss: -849.335083008
Iteration: 199, named_losses: [('ActivationMax Loss', -1707.3005),
('L-6.0 Norm Loss', 1.5956845),
('TV(2.0) Loss', 855.88831)], overall loss: -849.81652832
Iteration: 200, named_losses: [('ActivationMax Loss', -1709.6353),
('L-6.0 Norm Loss', 1.5962927),
('TV(2.0) Loss', 858.9491)], overall loss: -849.08984375