In [1]:
# importing required modules
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
# runing the functions script
%run stats_func.py
In [2]:
# loading the iris dataset
df = pd.read_csv('iris.csv')
df.head()
Out[2]:
In [3]:
# for further analysis sepal length and sepal width will be used
sepalLength = np.array(df['SepalLengthCm'])
sepalWidth = np.array(df['SepalWidthCm'])
In [4]:
# setting seaborn plot styles
sns.set()
# scatter plot
plt.plot(sepalLength, sepalWidth, marker='.', linestyle='none')
plt.xlabel('Sepal length [cm]')
plt.ylabel('Sepal width [cm]');
In [5]:
# the plot above is for all iris spieces, which can be listed via:
df['Species'].unique()
Out[5]:
In [6]:
# the remaining analysis will focus only on Iris-setosa
sepalLengthSetosa = np.array(df['SepalLengthCm'][df['Species'] == 'Iris-setosa'])
sepalWidthSetosa = np.array(df['SepalWidthCm'][df['Species'] == 'Iris-setosa'])
# scatter plot
plt.plot(sepalLengthSetosa, sepalWidthSetosa, marker='.', linestyle='none')
plt.xlabel('Sepal length [cm] Iris-setosa')
plt.ylabel('Sepal width [cm] Iris-setosa');
In [7]:
# linear regression
a, b = np.polyfit(sepalLengthSetosa, sepalWidthSetosa, 1)
# regression line
x = np.linspace(4, 6, 10)
y = a * x + b
# scatter plot with regression
plt.plot(sepalLengthSetosa, sepalWidthSetosa, marker='.', linestyle='none', label='data points')
plt.plot(x, y, color='green', label='lin reg line')
plt.legend(loc='lower right')
plt.xlabel('Sepal length [cm] Iris-setosa')
plt.ylabel('Sepal width [cm] Iris-setosa');
In [8]:
# second order regression
aa, bb, cc = np.polyfit(sepalLengthSetosa, sepalWidthSetosa, 2)
# regression line calculation
yy = aa * x**2 + bb * x + cc
# scatter plot with regression line
plt.plot(sepalLengthSetosa, sepalWidthSetosa, marker='.', linestyle='none', label='data points')
plt.plot(x, yy, color='red', label='quad reg line')
plt.legend(loc='lower right')
plt.xlabel('Sepal length [cm] Iris-setosa')
plt.ylabel('Sepal width [cm] Iris-setosa');
In [ ]: