In [1]:
import math
import matplotlib
import numpy as np
import sklearn
matplotlib.__version__,np.__version__,sklearn.__version__
Out[1]:
In [2]:
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from sklearn.model_selection import ParameterGrid, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
In [3]:
np.random.seed(222)
X, y = make_classification(
n_samples=10000,
n_features=10,
n_informative=10,
n_redundant=0,
weights=[0.3,0.7],
class_sep=0.7,
flip_y=0.35) # the default value for flip_y is 0.01, or 1%
X_train, _ , y_train, _ = train_test_split(X, y, test_size=0.25)
In [4]:
X.mean(),y.mean()
Out[4]:
In [5]:
np.random.seed(222)
X, y = make_classification(
n_samples=10000,
n_features=10,
n_informative=10,
n_redundant=0,
weights=[0.3,0.7],
class_sep=0.7,
flip_y=0.0)
_, X_test , _ , y_test = train_test_split(X, y, test_size=0.25)
In [6]:
X.mean(),y.mean()
Out[6]:
In [7]:
pipeline = Pipeline([
('prep',MinMaxScaler()),
('clf',SVC())
])
In [8]:
param_grid1 = [
{
'clf__kernel': ['linear'],
'clf__C':[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
'clf__gamma':['auto']
}
]
In [22]:
%%time
num_cols = 3
num_rows = math.ceil(len(ParameterGrid(param_grid1)) / num_cols)
# create a single figure
plt.clf()
fig,axes = plt.subplots(num_rows,num_cols,sharey=True)
fig.set_size_inches(num_cols*5,num_rows*5)
for i,g in enumerate(ParameterGrid(param_grid1)):
pipeline.set_params(**g)
pipeline.fit(X_train,y_train)
y_preds = pipeline.decision_function(X_test)
# fpr means false-positive-rate
# tpr means true-positive-rate
fpr, tpr, _ = metrics.roc_curve(y_test, y_preds)
auc_score = metrics.auc(fpr, tpr)
ax = axes[i // num_cols, i % num_cols]
# don't print the whole name or it won't fit
ax.set_title(str([r"{}:{}".format(
k.split('__')[1:],v) for k,v in g.items() if "gamma" not in k and "kernel" not in k]),fontsize=15)
ax.plot(fpr, tpr, label='AUC = {:.3f}'.format(auc_score))
ax.legend(loc='lower right')
# it's helpful to add a diagonal to indicate where chance
# scores lie (i.e. just flipping a coin)
ax.plot([0,1],[0,1],'r--')
ax.set_xlim([-0.1,1.1])
ax.set_ylim([-0.1,1.1])
ax.set_ylabel('True Positive Rate')
ax.set_xlabel('False Positive Rate')
plt.gcf().tight_layout()
plt.show()
In [10]:
param_grid2 = [
{
'clf__kernel': ['poly'],
'clf__C':[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
'clf__degree':[2],
'clf__gamma':['auto']
}
]
In [23]:
%%time
num_cols = 3
num_rows = math.ceil(len(ParameterGrid(param_grid2)) / num_cols)
# create a single figure
plt.clf()
fig,axes = plt.subplots(num_rows,num_cols,sharey=True)
fig.set_size_inches(num_cols*5,num_rows*5)
for i,g in enumerate(ParameterGrid(param_grid2)):
pipeline.set_params(**g)
pipeline.fit(X_train,y_train)
y_preds = pipeline.decision_function(X_test)
# fpr means false-positive-rate
# tpr means true-positive-rate
fpr, tpr, _ = metrics.roc_curve(y_test, y_preds)
auc_score = metrics.auc(fpr, tpr)
ax = axes[i // num_cols, i % num_cols]
# don't print the whole name or it won't fit
ax.set_title(str([r"{}:{}".format(
k.split('__')[1:],v) for k,v in g.items() if "gamma" not in k and "kernel" not in k]),fontsize=15)
ax.plot(fpr, tpr, label='AUC = {:.3f}'.format(auc_score))
ax.legend(loc='lower right')
# it's helpful to add a diagonal to indicate where chance
# scores lie (i.e. just flipping a coin)
ax.plot([0,1],[0,1],'r--')
ax.set_xlim([-0.1,1.1])
ax.set_ylim([-0.1,1.1])
ax.set_ylabel('True Positive Rate')
ax.set_xlabel('False Positive Rate')
plt.gcf().tight_layout()
plt.show()
In [12]:
param_grid3 = [
{
'clf__kernel': ['poly'],
'clf__C':[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
'clf__degree':[3],
'clf__gamma':['auto']
}
]
In [24]:
%%time
num_cols = 3
num_rows = math.ceil(len(ParameterGrid(param_grid3)) / num_cols)
# create a single figure
plt.clf()
fig,axes = plt.subplots(num_rows,num_cols,sharey=True)
fig.set_size_inches(num_cols*5,num_rows*5)
for i,g in enumerate(ParameterGrid(param_grid3)):
pipeline.set_params(**g)
pipeline.fit(X_train,y_train)
y_preds = pipeline.decision_function(X_test)
# fpr means false-positive-rate
# tpr means true-positive-rate
fpr, tpr, _ = metrics.roc_curve(y_test, y_preds)
auc_score = metrics.auc(fpr, tpr)
ax = axes[i // num_cols, i % num_cols]
# don't print the whole name or it won't fit
ax.set_title(str([r"{}:{}".format(
k.split('__')[1:],v) for k,v in g.items() if "gamma" not in k and "kernel" not in k]),fontsize=15)
ax.plot(fpr, tpr, label='AUC = {:.3f}'.format(auc_score))
ax.legend(loc='lower right')
# it's helpful to add a diagonal to indicate where chance
# scores lie (i.e. just flipping a coin)
ax.plot([0,1],[0,1],'r--')
ax.set_xlim([-0.1,1.1])
ax.set_ylim([-0.1,1.1])
ax.set_ylabel('True Positive Rate')
ax.set_xlabel('False Positive Rate')
plt.gcf().tight_layout()
plt.show()
In [25]:
param_grid4 = [
{
'clf__kernel': ['poly'],
'clf__C':[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
'clf__degree':[4],
'clf__gamma':['auto']
}
]
In [26]:
%%time
num_cols = 3
num_rows = math.ceil(len(ParameterGrid(param_grid4)) / num_cols)
# create a single figure
plt.clf()
fig,axes = plt.subplots(num_rows,num_cols,sharey=True)
fig.set_size_inches(num_cols*5,num_rows*5)
for i,g in enumerate(ParameterGrid(param_grid4)):
pipeline.set_params(**g)
pipeline.fit(X_train,y_train)
y_preds = pipeline.decision_function(X_test)
# fpr means false-positive-rate
# tpr means true-positive-rate
fpr, tpr, _ = metrics.roc_curve(y_test, y_preds)
auc_score = metrics.auc(fpr, tpr)
ax = axes[i // num_cols, i % num_cols]
# don't print the whole name or it won't fit
ax.set_title(str([r"{}:{}".format(
k.split('__')[1:],v) for k,v in g.items() if "gamma" not in k and "kernel" not in k]),fontsize=15)
ax.plot(fpr, tpr, label='AUC = {:.3f}'.format(auc_score))
ax.legend(loc='lower right')
# it's helpful to add a diagonal to indicate where chance
# scores lie (i.e. just flipping a coin)
ax.plot([0,1],[0,1],'r--')
ax.set_xlim([-0.1,1.1])
ax.set_ylim([-0.1,1.1])
ax.set_ylabel('True Positive Rate')
ax.set_xlabel('False Positive Rate')
plt.gcf().tight_layout()
plt.show()
In [27]:
param_grid5 = [
{
'clf__kernel': ['poly'],
'clf__C':[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
'clf__degree':[5],
'clf__gamma':['auto']
}
]
In [28]:
%%time
num_cols = 3
num_rows = math.ceil(len(ParameterGrid(param_grid5)) / num_cols)
# create a single figure
plt.clf()
fig,axes = plt.subplots(num_rows,num_cols,sharey=True)
fig.set_size_inches(num_cols*5,num_rows*5)
for i,g in enumerate(ParameterGrid(param_grid5)):
pipeline.set_params(**g)
pipeline.fit(X_train,y_train)
y_preds = pipeline.decision_function(X_test)
# fpr means false-positive-rate
# tpr means true-positive-rate
fpr, tpr, _ = metrics.roc_curve(y_test, y_preds)
auc_score = metrics.auc(fpr, tpr)
ax = axes[i // num_cols, i % num_cols]
# don't print the whole name or it won't fit
ax.set_title(str([r"{}:{}".format(
k.split('__')[1:],v) for k,v in g.items() if "gamma" not in k and "kernel" not in k]),fontsize=15)
ax.plot(fpr, tpr, label='AUC = {:.3f}'.format(auc_score))
ax.legend(loc='lower right')
# it's helpful to add a diagonal to indicate where chance
# scores lie (i.e. just flipping a coin)
ax.plot([0,1],[0,1],'r--')
ax.set_xlim([-0.1,1.1])
ax.set_ylim([-0.1,1.1])
ax.set_ylabel('True Positive Rate')
ax.set_xlabel('False Positive Rate')
plt.gcf().tight_layout()
plt.show()
In [18]:
param_grid6 = [
{
'clf__kernel': ['rbf'],
'clf__C':[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
'clf__gamma':['auto']
}
]
In [29]:
%%time
num_cols = 3
num_rows = math.ceil(len(ParameterGrid(param_grid6)) / num_cols)
# create a single figure
plt.clf()
fig,axes = plt.subplots(num_rows,num_cols,sharey=True)
fig.set_size_inches(num_cols*5,num_rows*5)
for i,g in enumerate(ParameterGrid(param_grid6)):
pipeline.set_params(**g)
pipeline.fit(X_train,y_train)
y_preds = pipeline.decision_function(X_test)
# fpr means false-positive-rate
# tpr means true-positive-rate
fpr, tpr, _ = metrics.roc_curve(y_test, y_preds)
auc_score = metrics.auc(fpr, tpr)
ax = axes[i // num_cols, i % num_cols]
ax.set_title(str([r"{}:{}".format(
k.split('__')[1:],v) for k,v in g.items() if "gamma" not in k and "kernel" not in k]),fontsize=15)
ax.plot(fpr, tpr, label='AUC = {:.3f}'.format(auc_score))
ax.legend(loc='lower right')
# it's helpful to add a diagonal to indicate where chance
# scores lie (i.e. just flipping a coin)
ax.plot([0,1],[0,1],'r--')
ax.set_xlim([-0.1,1.1])
ax.set_ylim([-0.1,1.1])
ax.set_ylabel('True Positive Rate')
ax.set_xlabel('False Positive Rate')
plt.gcf().tight_layout()
plt.show()