In [1]:
import numpy as np
from keras.models import Model
from keras.layers import Input, Dense, RepeatVector
from keras.legacy.layers import Merge
from keras import backend as K
import json
from collections import OrderedDict
In [2]:
def format_decimal(arr, places=6):
return [round(x * 10**places) / 10**places for x in arr]
In [3]:
DATA = OrderedDict()
[legacy.Merge.0] mode: sum
In [4]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_2 = Merge(mode='sum')([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.0'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.1] mode: mul
In [5]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_2 = Merge(mode='mul')([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.1'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.2] mode: ave
In [6]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_2 = Merge(mode='ave')([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.2'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.3] mode: max
In [7]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_2 = Merge(mode='max')([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.3'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.4] mode: concat (1D)
In [8]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_2 = Merge(mode='concat', concat_axis=-1)([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.4'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.5] mode: concat (2D, concatAxis=-1)
In [9]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='concat', concat_axis=-1)([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.5'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.6] mode: concat (2D, concatAxis=-2)
In [10]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='concat', concat_axis=-2)([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.6'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.7] mode: concat (2D, concatAxis=1)
In [11]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='concat', concat_axis=1)([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.7'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.8] mode: concat (2D, concatAxis=2)
In [12]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='concat', concat_axis=2)([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.8'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.9] mode: dot (2D x 2D, dotAxes=1)
In [13]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='dot', dot_axes=(1,1))([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.9'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.10] mode: dot (2D x 2D, dotAxes=2)
In [14]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='dot', dot_axes=(2,2))([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.10'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.11] mode: cos (2D x 2D, dotAxes=1)
In [15]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='cos', dot_axes=(1,1))([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.11'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.12] mode: cos (2D x 2D, dotAxes=2)
In [16]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='cos', dot_axes=(2,2))([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.12'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
[legacy.Merge.13] mode: cos (2D x 2D, dotAxes=(2,2))
In [17]:
layer_0 = Input(shape=(6,))
layer_1a = Dense(2, activation='linear')(layer_0)
layer_1a = RepeatVector(3)(layer_1a)
layer_1b = Dense(2, activation='linear')(layer_0)
layer_1b = RepeatVector(3)(layer_1b)
layer_2 = Merge(mode='cos', dot_axes=(2,2))([layer_1a, layer_1b])
model = Model(inputs=layer_0, outputs=layer_2)
W_1a = np.array([0.1, 0.4, 0.5, 0.1, 1, -2, 0, 0.3, 0.2, 0.1, 3, 0]).reshape((6, 2))
b_1a = np.array([0.5, 0.7])
W_1b = np.array([1, 0, -0.9, 0.6, -0.7, 0, 0.2, 0.4, 0, 0, -1, 2.3]).reshape((6, 2))
b_1b = np.array([0.1, -0.2])
model.set_weights([W_1a, b_1a, W_1b, b_1b])
data_in = [0, 0.2, 0.5, -0.1, 1, 2]
data_in_shape = (6,)
print('in:', data_in)
print('in shape:', data_in_shape)
arr_in = np.array(data_in, dtype='float32').reshape(data_in_shape)
result = model.predict(np.array([arr_in]))
arr_out = result[0]
data_out_shape = arr_out.shape
print('out shape:', data_out_shape)
data_out = format_decimal(arr_out.ravel().tolist())
print('out:', data_out)
DATA['legacy.Merge.13'] = {
'input': {'data': data_in, 'shape': data_in_shape},
'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in [W_1a, b_1a, W_1b, b_1b]],
'expected': {'data': data_out, 'shape': data_out_shape}
}
In [18]:
print(json.dumps(DATA))
In [ ]: