In [1]:
import numpy as np
from keras.models import Model
from keras.layers import Input
from keras.layers.convolutional import Conv3D
from keras import backend as K
import json
from collections import OrderedDict


Using TensorFlow backend.

In [2]:
def format_decimal(arr, places=6):
    return [round(x * 10**places) / 10**places for x in arr]

In [3]:
DATA = OrderedDict()

Conv3D

[convolutional.Conv3D.0] 4 3x3x3 filters on 5x5x5x2 input, strides=(1,1,1), padding='valid', data_format='channels_last', dilation_rate=(1,1,1), activation='linear', use_bias=True


In [4]:
data_in_shape = (5, 5, 5, 2)
conv = Conv3D(4, (3,3,3), strides=(1,1,1), padding='valid',
              data_format='channels_last', dilation_rate=(1,1,1),
              activation='linear', use_bias=True)

layer_0 = Input(shape=data_in_shape)
layer_1 = conv(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)

# set weights to random (use seed for reproducibility)
weights = []
for w in model.get_weights():
    np.random.seed(130)
    weights.append(2 * np.random.random(w.shape) - 1)
model.set_weights(weights)
print('W shape:', weights[0].shape)
print('W:', format_decimal(weights[0].ravel().tolist()))
print('b shape:', weights[1].shape)
print('b:', format_decimal(weights[1].ravel().tolist()))

data_in = 2 * np.random.random(data_in_shape) - 1
result = model.predict(np.array([data_in]))
data_out_shape = result[0].shape
data_in_formatted = format_decimal(data_in.ravel().tolist())
data_out_formatted = format_decimal(result[0].ravel().tolist())
print('')
print('in shape:', data_in_shape)
print('in:', data_in_formatted)
print('out shape:', data_out_shape)
print('out:', data_out_formatted)

DATA['convolutional.Conv3D.0'] = {
    'input': {'data': data_in_formatted, 'shape': data_in_shape},
    'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in weights],
    'expected': {'data': data_out_formatted, 'shape': data_out_shape}
}


W shape: (3, 3, 3, 2, 4)
W: [-0.716739, -0.376911, 0.109585, -0.748377, -0.012235, 0.842256, -0.24031, -0.747101, 0.997502, 0.541847, 0.46022, -0.936762, 0.620677, -0.897006, 0.142436, -0.321119, -0.564347, 0.528326, 0.895515, 0.412205, 0.863293, -0.122241, 0.253835, 0.334585, -0.843125, -0.865964, -0.033224, 0.770519, 0.602345, 0.482129, -0.534779, 0.882924, 0.845752, -0.040631, 0.674428, -0.779344, 0.053258, -0.70852, -0.956298, -0.280062, 0.627909, 0.725718, -0.103394, -0.791248, 0.74844, -0.409891, 0.60642, -0.703554, -0.678996, -0.865614, 0.557983, 0.833801, 0.422953, -0.214554, 0.234606, -0.723627, 0.379456, -0.783448, 0.413208, 0.570398, -0.073524, -0.77024, -0.435243, -0.660294, 0.276208, -0.676938, 0.11366, 0.073336, 0.485568, -0.38602, 0.963383, -0.28129, 0.757856, 0.342945, 0.083787, 0.138463, 0.67179, 0.519043, 0.654146, 0.465576, 0.784872, -0.364478, -0.423446, -0.572558, -0.083876, -0.54903, -0.295645, 0.2349, 0.215547, -0.08804, -0.935702, -0.804254, 0.842041, 0.891524, 0.53582, 0.816882, -0.31899, 0.761039, 0.092443, -0.013288, 0.81033, 0.095114, 0.948258, -0.974729, -0.187374, -0.227432, 0.102514, -0.06137, 0.344298, -0.700357, 0.793725, -0.390442, 0.561325, 0.069437, 0.297307, -0.139713, 0.796003, -0.873413, 0.228104, -0.447393, -0.246792, 0.931166, 0.149258, -0.122052, 0.027526, 0.592017, 0.470149, 0.726634, 0.151077, -0.513093, 0.558565, -0.242539, -0.411284, -0.713388, -0.522539, 0.78801, -0.702311, -0.891064, -0.871238, -0.853877, 0.333665, 0.438522, -0.491023, -0.868654, -0.742188, -0.832603, -0.0604, 0.638536, -0.235743, 0.508252, -0.443941, 0.710677, 0.194301, 0.17929, 0.235854, -0.376182, -0.346676, 0.670737, -0.94404, -0.64212, -0.512999, 0.97764, 0.463103, 0.791414, 0.814634, 0.309827, -0.210593, -0.142933, 0.201831, -0.440759, -0.217137, -0.893463, -0.788414, -0.099469, 0.806605, -0.388143, -0.322186, 0.899655, 0.08527, -0.805031, 0.833597, 0.228396, -0.942825, -0.954152, 0.750815, 0.178301, -0.528541, -0.533345, -0.760308, -0.384974, -0.031988, 0.52894, -0.898135, 0.379761, 0.207095, 0.882652, 0.444118, -0.014279, -0.333001, -0.812251, -0.186455, -0.778118, -0.459847, 0.402095, 0.610382, 0.477684, -0.86357, -0.420118, 0.503587, -0.730952, 0.904388, 0.272979, -0.98017, -0.192944, 0.500952, 0.98925]
b shape: (4,)
b: [-0.716739, -0.376911, 0.109585, -0.748377]

in shape: (5, 5, 5, 2)
in: [-0.012235, 0.842256, -0.24031, -0.747101, 0.997502, 0.541847, 0.46022, -0.936762, 0.620677, -0.897006, 0.142436, -0.321119, -0.564347, 0.528326, 0.895515, 0.412205, 0.863293, -0.122241, 0.253835, 0.334585, -0.843125, -0.865964, -0.033224, 0.770519, 0.602345, 0.482129, -0.534779, 0.882924, 0.845752, -0.040631, 0.674428, -0.779344, 0.053258, -0.70852, -0.956298, -0.280062, 0.627909, 0.725718, -0.103394, -0.791248, 0.74844, -0.409891, 0.60642, -0.703554, -0.678996, -0.865614, 0.557983, 0.833801, 0.422953, -0.214554, 0.234606, -0.723627, 0.379456, -0.783448, 0.413208, 0.570398, -0.073524, -0.77024, -0.435243, -0.660294, 0.276208, -0.676938, 0.11366, 0.073336, 0.485568, -0.38602, 0.963383, -0.28129, 0.757856, 0.342945, 0.083787, 0.138463, 0.67179, 0.519043, 0.654146, 0.465576, 0.784872, -0.364478, -0.423446, -0.572558, -0.083876, -0.54903, -0.295645, 0.2349, 0.215547, -0.08804, -0.935702, -0.804254, 0.842041, 0.891524, 0.53582, 0.816882, -0.31899, 0.761039, 0.092443, -0.013288, 0.81033, 0.095114, 0.948258, -0.974729, -0.187374, -0.227432, 0.102514, -0.06137, 0.344298, -0.700357, 0.793725, -0.390442, 0.561325, 0.069437, 0.297307, -0.139713, 0.796003, -0.873413, 0.228104, -0.447393, -0.246792, 0.931166, 0.149258, -0.122052, 0.027526, 0.592017, 0.470149, 0.726634, 0.151077, -0.513093, 0.558565, -0.242539, -0.411284, -0.713388, -0.522539, 0.78801, -0.702311, -0.891064, -0.871238, -0.853877, 0.333665, 0.438522, -0.491023, -0.868654, -0.742188, -0.832603, -0.0604, 0.638536, -0.235743, 0.508252, -0.443941, 0.710677, 0.194301, 0.17929, 0.235854, -0.376182, -0.346676, 0.670737, -0.94404, -0.64212, -0.512999, 0.97764, 0.463103, 0.791414, 0.814634, 0.309827, -0.210593, -0.142933, 0.201831, -0.440759, -0.217137, -0.893463, -0.788414, -0.099469, 0.806605, -0.388143, -0.322186, 0.899655, 0.08527, -0.805031, 0.833597, 0.228396, -0.942825, -0.954152, 0.750815, 0.178301, -0.528541, -0.533345, -0.760308, -0.384974, -0.031988, 0.52894, -0.898135, 0.379761, 0.207095, 0.882652, 0.444118, -0.014279, -0.333001, -0.812251, -0.186455, -0.778118, -0.459847, 0.402095, 0.610382, 0.477684, -0.86357, -0.420118, 0.503587, -0.730952, 0.904388, 0.272979, -0.98017, -0.192944, 0.500952, 0.98925, 0.341975, -0.562962, 0.049861, -0.202414, -0.830072, -0.905711, -0.925835, 0.781849, -0.920591, -0.307965, -0.471503, -0.554001, 0.713829, -0.412998, -0.516655, -0.631432, 0.976909, -0.804501, 0.406977, 0.791254, 0.294557, 0.437734, -0.094275, -0.820109, -0.48955, 0.396867, -0.827079, -0.419779, -0.037705, -0.387553, 0.871437, -0.444237, -0.928096, 0.759913, 0.824767, -0.391281, 0.80935, 0.556379]
out shape: (3, 3, 3, 4)
out: [-0.990212, 1.639581, -1.948825, -3.684331, 0.257052, -2.808133, 2.076573, -2.729982, -0.78123, 0.347783, 2.327393, -2.657676, -0.107308, -1.605268, 0.62405, -5.659127, 2.852406, -0.649643, 6.126531, -2.272969, 1.019947, 3.255988, -6.427436, -7.437248, -4.01012, -1.170293, 1.765438, 6.611716, -0.59429, -0.561376, -0.271424, 1.316552, 1.801865, -2.038508, -1.221814, -3.836679, -2.255499, -2.756532, -1.162019, -2.273401, 0.959788, -2.926484, 0.890316, -2.095109, -0.56757, 0.593196, -0.404296, -2.956032, 1.313724, 0.757657, 1.019654, -2.681708, -1.103542, 2.976485, 1.964336, -2.199447, -1.192246, -1.618244, 0.738719, 0.553589, -1.725408, -3.353908, -1.78493, -3.942136, 0.091989, 1.563757, 0.504778, 2.773416, -4.433075, -2.957799, -1.355837, -0.652115, -4.728858, -1.700152, 3.67987, 0.592441, -1.557015, 2.452404, 5.097181, 0.639657, -4.788903, -3.806307, 1.558109, 3.81415, 0.053524, 6.426715, -1.117815, 0.510982, -0.930588, 0.263227, 0.744451, -2.02314, -0.781206, -1.206907, -2.087747, 0.768416, -3.891211, 2.946293, 0.308395, 1.134286, -1.11568, 2.414839, 4.610423, -3.157369, -1.071085, -5.993021, -0.112579, -3.090427]

[convolutional.Conv3D.1] 2 3x3x3 filters on 4x4x4x2 input, strides=(1,1,1), padding='valid', data_format='channels_last', dilation_rate=(1,1,1), activation='sigmoid', use_bias=False


In [5]:
data_in_shape = (4, 4, 4, 2)
conv = Conv3D(2, (3,3,3), strides=(1,1,1), padding='valid',
              data_format='channels_last', dilation_rate=(1,1,1),
              activation='sigmoid', use_bias=False)

layer_0 = Input(shape=data_in_shape)
layer_1 = conv(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)

# set weights to random (use seed for reproducibility)
weights = []
for w in model.get_weights():
    np.random.seed(131)
    weights.append(2 * np.random.random(w.shape) - 1)
model.set_weights(weights)
print('W shape:', weights[0].shape)
print('W:', format_decimal(weights[0].ravel().tolist()))
#print('b shape:', weights[1].shape)
#print('b:', format_decimal(weights[1].ravel().tolist()))

data_in = 2 * np.random.random(data_in_shape) - 1
result = model.predict(np.array([data_in]))
data_out_shape = result[0].shape
data_in_formatted = format_decimal(data_in.ravel().tolist())
data_out_formatted = format_decimal(result[0].ravel().tolist())
print('')
print('in shape:', data_in_shape)
print('in:', data_in_formatted)
print('out shape:', data_out_shape)
print('out:', data_out_formatted)

DATA['convolutional.Conv3D.1'] = {
    'input': {'data': data_in_formatted, 'shape': data_in_shape},
    'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in weights],
    'expected': {'data': data_out_formatted, 'shape': data_out_shape}
}


W shape: (3, 3, 3, 2, 2)
W: [0.300307, 0.896218, -0.223942, 0.282592, 0.381024, -0.746781, -0.521066, -0.491686, -0.147117, 0.678005, 0.490067, -0.238641, -0.476614, -0.893332, -0.126207, -0.582042, 0.188822, -0.802193, -0.551813, 0.168525, 0.918162, -0.580232, 0.322675, 0.005226, -0.359417, -0.74987, 0.613778, 0.97392, 0.086083, -0.537354, 0.207025, -0.646608, 0.773075, 0.178045, 0.442345, -0.448659, 0.576229, -0.734755, -0.200568, 0.259648, -0.151913, -0.676254, 0.040688, 0.214083, 0.161611, 0.642232, 0.969984, 0.86899, 0.80611, -0.323948, 0.566489, 0.487469, 0.161171, -0.134673, 0.335856, -0.526625, -0.096527, 0.839995, 0.933746, 0.538101, -0.346576, 0.24568, -0.616796, -0.503357, -0.766323, -0.979349, 0.697389, 0.061332, -0.01233, 0.304615, -0.546648, 0.234325, -0.598896, -0.018136, 0.89706, 0.963941, -0.653697, 0.485039, -0.227064, 0.302214, 0.486927, -0.504459, -0.015408, -0.1505, -0.419861, 0.973378, -0.3211, -0.600593, 0.657395, -0.274736, 0.42005, -0.193936, -0.222912, 0.005268, 0.593099, -0.977881, -0.911958, 0.794233, 0.506375, 0.724717, 0.980406, 0.160665, 0.907777, -0.158316, -0.663804, -0.93618, 0.166131, 0.47488]

in shape: (4, 4, 4, 2)
in: [0.54298, -0.369581, 0.787756, -0.413208, -0.451769, 0.474871, 0.955491, -0.993053, 0.892644, 0.317005, -0.299495, -0.282463, 0.092705, 0.847179, 0.355861, -0.356589, -0.34065, -0.644927, 0.294664, 0.525887, -0.45672, 0.109351, -0.232926, -0.322716, 0.708476, 0.133826, 0.942949, 0.509234, 0.666986, 0.647692, 0.46106, 0.294315, -0.531805, 0.742175, -0.943787, 0.452597, -0.223524, -0.821973, 0.130818, -0.241084, -0.709061, -0.410544, -0.779838, 0.3187, 0.449769, -0.098487, -0.717268, -0.820627, -0.03977, 0.212835, 0.322279, -0.365277, 0.551029, -0.791009, 0.454023, -0.151234, 0.241568, 0.728562, 0.92247, -0.61221, 0.023427, 0.923886, -0.594403, 0.111887, 0.721627, -0.170876, 0.134098, -0.790903, -0.692903, 0.184462, -0.64679, -0.812958, -0.352592, 0.373439, 0.244427, 0.524303, 0.772487, -0.929582, 0.019085, -0.569751, 0.950518, 0.539197, 0.102938, -0.81072, -0.658932, 0.458097, -0.984345, -0.563091, -0.842868, -0.816919, 0.144705, 0.110019, 0.637162, -0.055083, -0.830439, -0.275994, -0.926286, 0.692921, -0.816955, 0.94607, 0.303029, 0.221167, 0.703979, 0.010576, 0.093083, 0.709286, -0.301982, 0.70202, 0.968466, 0.722557, -0.378228, 0.671395, -0.132298, 0.81306, -0.922057, -0.662015, 0.404419, -0.017544, 0.939241, 0.452875, -0.436359, -0.918861, -0.685562, 0.2343, -0.344733, 0.058154, 0.883477, -0.027478]
out shape: (2, 2, 2, 2)
out: [0.028378, 0.571757, 0.006776, 0.886406, 0.155123, 0.446979, 0.280513, 0.76513, 0.107532, 0.596331, 0.958001, 0.078373, 0.762681, 0.216897, 0.14058, 0.000131]

[convolutional.Conv3D.2] 2 3x3x3 filters on 4x4x3x2 input, strides=(1,1,1), padding='same', data_format='channels_last', dilation_rate=(1,1,1), activation='relu', use_bias=True


In [6]:
data_in_shape = (4, 4, 3, 2)
conv = Conv3D(2, (3,3,3), strides=(1,1,1), padding='same',
              data_format='channels_last', dilation_rate=(1,1,1),
              activation='relu', use_bias=True)

layer_0 = Input(shape=data_in_shape)
layer_1 = conv(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)

# set weights to random (use seed for reproducibility)
weights = []
for w in model.get_weights():
    np.random.seed(132)
    weights.append(2 * np.random.random(w.shape) - 1)
model.set_weights(weights)
print('W shape:', weights[0].shape)
print('W:', format_decimal(weights[0].ravel().tolist()))
print('b shape:', weights[1].shape)
print('b:', format_decimal(weights[1].ravel().tolist()))

data_in = 2 * np.random.random(data_in_shape) - 1
result = model.predict(np.array([data_in]))
data_out_shape = result[0].shape
data_in_formatted = format_decimal(data_in.ravel().tolist())
data_out_formatted = format_decimal(result[0].ravel().tolist())
print('')
print('in shape:', data_in_shape)
print('in:', data_in_formatted)
print('out shape:', data_out_shape)
print('out:', data_out_formatted)

DATA['convolutional.Conv3D.2'] = {
    'input': {'data': data_in_formatted, 'shape': data_in_shape},
    'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in weights],
    'expected': {'data': data_out_formatted, 'shape': data_out_shape}
}


W shape: (3, 3, 3, 2, 2)
W: [0.561808, -0.237711, 0.657275, 0.563366, 0.603194, -0.286196, 0.924244, -0.28752, 0.637161, 0.810376, -0.914473, -0.967621, 0.112092, -0.838944, 0.928514, -0.182969, -0.348933, -0.07114, 0.743005, -0.294021, -0.568579, -0.596645, -0.517913, -0.571138, -0.497605, -0.358416, 0.073639, -0.83844, -0.915183, 0.412981, 0.909286, 0.226941, 0.373944, -0.563635, 0.753859, -0.681375, 0.022101, -0.582124, -0.280116, -0.82489, -0.757258, 0.989785, 0.028165, 0.366484, -0.778942, 0.27204, -0.25007, -0.967536, 0.28709, -0.797754, -0.68149, 0.394872, -0.43468, 0.665998, 0.869927, -0.606877, -0.134099, 0.652508, -0.603352, 0.633151, -0.836046, -0.196456, 0.947196, 0.760248, -0.921493, -0.372249, -0.982245, -0.864395, -0.339177, -0.904094, 0.959217, 0.147402, 0.504567, 0.769068, 0.629401, -0.441415, 0.813767, -0.350138, 0.864937, -0.10205, 0.145076, -0.590264, 0.733088, -0.45583, 0.040498, -0.05256, 0.022563, -0.375014, 0.700348, 0.75455, 0.610168, 0.194477, -0.810708, -0.19662, -0.842144, 0.285245, -0.305602, -0.714785, -0.389563, 0.487303, 0.384339, -0.825992, 0.655456, 0.015094, 0.069932, -0.350014, -0.852013, -0.034763]
b shape: (2,)
b: [0.561808, -0.237711]

in shape: (4, 4, 3, 2)
in: [0.657275, 0.563366, 0.603194, -0.286196, 0.924244, -0.28752, 0.637161, 0.810376, -0.914473, -0.967621, 0.112092, -0.838944, 0.928514, -0.182969, -0.348933, -0.07114, 0.743005, -0.294021, -0.568579, -0.596645, -0.517913, -0.571138, -0.497605, -0.358416, 0.073639, -0.83844, -0.915183, 0.412981, 0.909286, 0.226941, 0.373944, -0.563635, 0.753859, -0.681375, 0.022101, -0.582124, -0.280116, -0.82489, -0.757258, 0.989785, 0.028165, 0.366484, -0.778942, 0.27204, -0.25007, -0.967536, 0.28709, -0.797754, -0.68149, 0.394872, -0.43468, 0.665998, 0.869927, -0.606877, -0.134099, 0.652508, -0.603352, 0.633151, -0.836046, -0.196456, 0.947196, 0.760248, -0.921493, -0.372249, -0.982245, -0.864395, -0.339177, -0.904094, 0.959217, 0.147402, 0.504567, 0.769068, 0.629401, -0.441415, 0.813767, -0.350138, 0.864937, -0.10205, 0.145076, -0.590264, 0.733088, -0.45583, 0.040498, -0.05256, 0.022563, -0.375014, 0.700348, 0.75455, 0.610168, 0.194477, -0.810708, -0.19662, -0.842144, 0.285245, -0.305602, -0.714785]
out shape: (4, 4, 3, 2)
out: [0.0, 0.0, 0.202974, 0.32343, 1.256458, 0.0, 0.0, 0.59227, 0.0, 0.0, 0.0, 1.277499, 0.514505, 3.565827, 1.717093, 0.0, 0.518093, 2.13386, 0.597589, 0.0, 0.145479, 0.0, 0.411267, 0.096419, 0.0, 0.911234, 0.0, 0.0, 0.0, 3.251087, 6.37503, 3.037017, 2.607065, 0.0, 0.0, 1.6602, 1.164416, 2.613473, 3.836789, 0.679142, 0.0, 0.0, 2.195455, 0.0, 0.0, 5.636247, 0.0, 0.948504, 0.0, 0.0, 0.0, 0.583949, 0.805164, 3.08051, 0.0, 0.0, 3.62315, 1.695895, 2.409393, 0.738817, 0.177071, 1.258827, 1.401754, 0.0, 0.0, 0.919304, 0.0, 0.423109, 2.58729, 0.0, 1.76654, 0.0, 1.167698, 0.297612, 0.896641, 0.102354, 0.287512, 0.0, 0.0, 1.459626, 0.0, 1.226061, 1.221153, 0.68316, 1.060495, 1.016869, 3.17602, 2.120962, 0.636249, 2.750501, 0.0, 0.0, 0.0, 0.401625, 0.0, 0.0]

[convolutional.Conv3D.3] 2 3x3x2 filters on 4x4x3x2 input, strides=(2,1,1), padding='same', data_format='channels_last', dilation_rate=(1,1,1), activation='relu', use_bias=True


In [7]:
data_in_shape = (4, 4, 3, 2)
conv = Conv3D(2, (3,3,2), strides=(2,1,1), padding='same',
              data_format='channels_last', dilation_rate=(1,1,1),
              activation='relu', use_bias=True)

layer_0 = Input(shape=data_in_shape)
layer_1 = conv(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)

# set weights to random (use seed for reproducibility)
weights = []
for w in model.get_weights():
    np.random.seed(133)
    weights.append(2 * np.random.random(w.shape) - 1)
model.set_weights(weights)
print('W shape:', weights[0].shape)
print('W:', format_decimal(weights[0].ravel().tolist()))
print('b shape:', weights[1].shape)
print('b:', format_decimal(weights[1].ravel().tolist()))

data_in = 2 * np.random.random(data_in_shape) - 1
result = model.predict(np.array([data_in]))
data_out_shape = result[0].shape
data_in_formatted = format_decimal(data_in.ravel().tolist())
data_out_formatted = format_decimal(result[0].ravel().tolist())
print('')
print('in shape:', data_in_shape)
print('in:', data_in_formatted)
print('out shape:', data_out_shape)
print('out:', data_out_formatted)

DATA['convolutional.Conv3D.3'] = {
    'input': {'data': data_in_formatted, 'shape': data_in_shape},
    'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in weights],
    'expected': {'data': data_out_formatted, 'shape': data_out_shape}
}


W shape: (3, 3, 2, 2, 2)
W: [-0.160983, -0.740678, -0.780888, -0.715513, -0.121464, 0.475806, -0.594872, -0.377686, 0.116261, 0.792104, -0.256096, 0.879075, -0.36824, 0.543525, 0.394369, 0.858105, -0.755411, -0.121975, -0.06772, -0.070284, -0.00725, 0.064283, -0.248044, -0.679932, -0.289603, 0.951553, 0.722203, 0.732689, 0.334081, 0.730298, -0.464328, 0.955306, 0.991716, -0.649746, -0.679444, 0.241959, -0.305542, 0.442359, 0.66645, 0.09566, 0.097175, -0.583151, -0.84885, -0.88039, -0.245959, 0.440772, -0.576763, -0.839252, -0.189355, -0.312547, -0.240347, 0.037718, 0.270261, 0.740958, -0.080857, -0.34412, -0.776913, 0.119299, 0.715073, 0.65029, -0.303087, -0.742422, 0.283872, -0.453492, 0.657322, 0.294547, -0.211275, -0.676264, -0.362203, -0.414399, -0.820797, 0.065655]
b shape: (2,)
b: [-0.160983, -0.740678]

in shape: (4, 4, 3, 2)
in: [-0.780888, -0.715513, -0.121464, 0.475806, -0.594872, -0.377686, 0.116261, 0.792104, -0.256096, 0.879075, -0.36824, 0.543525, 0.394369, 0.858105, -0.755411, -0.121975, -0.06772, -0.070284, -0.00725, 0.064283, -0.248044, -0.679932, -0.289603, 0.951553, 0.722203, 0.732689, 0.334081, 0.730298, -0.464328, 0.955306, 0.991716, -0.649746, -0.679444, 0.241959, -0.305542, 0.442359, 0.66645, 0.09566, 0.097175, -0.583151, -0.84885, -0.88039, -0.245959, 0.440772, -0.576763, -0.839252, -0.189355, -0.312547, -0.240347, 0.037718, 0.270261, 0.740958, -0.080857, -0.34412, -0.776913, 0.119299, 0.715073, 0.65029, -0.303087, -0.742422, 0.283872, -0.453492, 0.657322, 0.294547, -0.211275, -0.676264, -0.362203, -0.414399, -0.820797, 0.065655, 0.892713, 0.922155, -0.495448, 0.794696, -0.998576, 0.689174, -0.94489, -0.97599, 0.608171, 0.634289, 0.350419, -0.967604, -0.024661, -0.816395, 0.316404, -0.849656, 0.324503, 0.389871, 0.534612, -0.283795, 0.495473, 0.079537, 0.128614, -0.781724, -0.215271, -0.022468]
out shape: (2, 4, 3, 2)
out: [0.09816, 0.0, 1.235674, 0.0, 0.0, 0.0, 2.877764, 1.905926, 1.647481, 3.613319, 0.795886, 1.891695, 0.0, 0.0, 0.0, 0.0, 0.357909, 0.0, 0.0, 0.0, 0.734974, 0.0, 0.0, 0.0, 0.132112, 0.0, 0.0, 1.763944, 0.613645, 0.092832, 0.0, 0.0, 0.0, 0.0, 0.872912, 0.0, 2.011758, 0.754629, 0.0, 0.0, 0.018068, 0.0, 0.0, 0.0, 1.061294, 0.0, 0.0, 1.852663]

[convolutional.Conv3D.4] 2 3x3x3 filters on 6x6x4x2 input, strides=(3,3,2), padding='same', data_format='channels_last', dilation_rate=(1,1,1), activation='relu', use_bias=True


In [8]:
data_in_shape = (6, 6, 4, 2)
conv = Conv3D(2, (3,3,3), strides=(3,3,2), padding='same',
              data_format='channels_last', dilation_rate=(1,1,1),
              activation='relu', use_bias=True)

layer_0 = Input(shape=data_in_shape)
layer_1 = conv(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)

# set weights to random (use seed for reproducibility)
weights = []
for w in model.get_weights():
    np.random.seed(134)
    weights.append(2 * np.random.random(w.shape) - 1)
model.set_weights(weights)
print('W shape:', weights[0].shape)
print('W:', format_decimal(weights[0].ravel().tolist()))
print('b shape:', weights[1].shape)
print('b:', format_decimal(weights[1].ravel().tolist()))

data_in = 2 * np.random.random(data_in_shape) - 1
result = model.predict(np.array([data_in]))
data_out_shape = result[0].shape
data_in_formatted = format_decimal(data_in.ravel().tolist())
data_out_formatted = format_decimal(result[0].ravel().tolist())
print('')
print('in shape:', data_in_shape)
print('in:', data_in_formatted)
print('out shape:', data_out_shape)
print('out:', data_out_formatted)

DATA['convolutional.Conv3D.4'] = {
    'input': {'data': data_in_formatted, 'shape': data_in_shape},
    'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in weights],
    'expected': {'data': data_out_formatted, 'shape': data_out_shape}
}


W shape: (3, 3, 3, 2, 2)
W: [0.622807, -0.104472, 0.255491, 0.763798, 0.330149, 0.766733, 0.42334, 0.330543, -0.75135, -0.922873, -0.583415, -0.466281, -0.717938, 0.731792, -0.400509, 0.612512, -0.498783, -0.14186, -0.737372, 0.781319, 0.651852, 0.673768, 0.431092, -0.299636, -0.592396, -0.25223, 0.660295, 0.014915, -0.737261, -0.683528, 0.991536, 0.863046, -0.857707, -0.709703, 0.619649, 0.440344, -0.075421, 0.792503, -0.7677, 0.799309, -0.819924, 0.230663, 0.585082, -0.65765, 0.912941, 0.378832, -0.756722, -0.282432, -0.619629, 0.971307, 0.261786, 0.695286, 0.447511, -0.336526, 0.823161, 0.964889, -0.567008, -0.256448, -0.630859, -0.033653, -0.068675, -0.307193, -0.746842, -0.749483, -0.750777, 0.40137, 0.546076, 0.989245, -0.156364, -0.439605, -0.342656, -0.89142, 0.671516, -0.96313, 0.415092, 0.10452, -0.933763, -0.493381, 0.680007, -0.064914, 0.552154, 0.420418, -0.104774, 0.339607, -0.840586, 0.34762, 0.456402, 0.917853, 0.427665, 0.478747, 0.994486, 0.549693, -0.779373, -0.078222, 0.580719, -0.961111, 0.459178, -0.165215, -0.315997, -0.727695, -0.717506, -0.101921, -0.155999, 0.242368, -0.952067, -0.00297, -0.331119, -0.101121]
b shape: (2,)
b: [0.622807, -0.104472]

in shape: (6, 6, 4, 2)
in: [0.255491, 0.763798, 0.330149, 0.766733, 0.42334, 0.330543, -0.75135, -0.922873, -0.583415, -0.466281, -0.717938, 0.731792, -0.400509, 0.612512, -0.498783, -0.14186, -0.737372, 0.781319, 0.651852, 0.673768, 0.431092, -0.299636, -0.592396, -0.25223, 0.660295, 0.014915, -0.737261, -0.683528, 0.991536, 0.863046, -0.857707, -0.709703, 0.619649, 0.440344, -0.075421, 0.792503, -0.7677, 0.799309, -0.819924, 0.230663, 0.585082, -0.65765, 0.912941, 0.378832, -0.756722, -0.282432, -0.619629, 0.971307, 0.261786, 0.695286, 0.447511, -0.336526, 0.823161, 0.964889, -0.567008, -0.256448, -0.630859, -0.033653, -0.068675, -0.307193, -0.746842, -0.749483, -0.750777, 0.40137, 0.546076, 0.989245, -0.156364, -0.439605, -0.342656, -0.89142, 0.671516, -0.96313, 0.415092, 0.10452, -0.933763, -0.493381, 0.680007, -0.064914, 0.552154, 0.420418, -0.104774, 0.339607, -0.840586, 0.34762, 0.456402, 0.917853, 0.427665, 0.478747, 0.994486, 0.549693, -0.779373, -0.078222, 0.580719, -0.961111, 0.459178, -0.165215, -0.315997, -0.727695, -0.717506, -0.101921, -0.155999, 0.242368, -0.952067, -0.00297, -0.331119, -0.101121, 0.979275, 0.999252, 0.521731, -0.683745, 0.13268, -0.02283, -0.333171, 0.084336, 0.967829, -0.243099, -0.65592, 0.265795, -0.738191, 0.748515, 0.055295, -0.71117, -0.849279, 0.946324, 0.91352, -0.922913, 0.905676, 0.42188, -0.327285, -0.631911, -0.775742, -0.696021, 0.996116, 0.288415, -0.134258, -0.118686, 0.047865, 0.599197, -0.267092, 0.326933, -0.118315, 0.288843, -0.088352, 0.873786, 0.367592, -0.2835, 0.062748, 0.124767, -0.306431, -0.797375, -0.338658, 0.090141, 0.399011, 0.270202, 0.735773, 0.576237, 0.49903, 0.950745, 0.445642, 0.789956, -0.591685, -0.091733, 0.452208, 0.572278, -0.014814, 0.178051, 0.750801, -0.077224, -0.005775, -0.548912, -0.58962, -0.665754, 0.286856, 0.843047, -0.17934, -0.562433, 0.751457, -0.253229, -0.003361, -0.883475, 0.401674, 0.241623, -0.285594, 0.401469, 0.069789, 0.889598, 0.970932, -0.905932, -0.699628, 0.545623, 0.781924, 0.834341, 0.167673, -0.684819, -0.554758, 0.87348, 0.113279, -0.027234, -0.154146, -0.572187, -0.082501, 0.745653, 0.437841, 0.672742, -0.20552, -0.731811, 0.639947, 0.865838, 0.04588, 0.139607, 0.521049, 0.906016, 0.439766, 0.161608, 0.988467, 0.116776, -0.141933, 0.658322, 0.407769, 0.706881, 0.278246, -0.176282, -0.232731, 0.89114, 0.906824, 0.486935, -0.599041, 0.191432, 0.812589, -0.281513, 0.47336, 0.24849, -0.912168, -0.017699, 0.072546, 0.9249, 0.367322, -0.154274, -0.847056, -0.207236, 0.571427, -0.904635, 0.260295, -0.835689, -0.578835, 0.918011, 0.048527, -0.674753, -0.7327, -0.209332, 0.87192, -0.526782, -0.47431, 0.198573, 0.274862, -0.570459, 0.357794, -0.923848, -0.326055, -0.621309, -0.298064, 0.588621, -0.434224, 0.26631, -0.458417, 0.699587, 0.586844, 0.157536, 0.777812, -0.811094, 0.749212, -0.492543, -0.482318, 0.783566, -0.881362, -0.826629, -0.808297, 0.990087, -0.97475, -0.076858, 0.684759, -0.449941, -0.237982, -0.847246, -0.809583, 0.119563, -0.316425, -0.679099]
out shape: (2, 2, 2, 2)
out: [1.786687, 1.633532, 0.087363, 0.705533, 0.0, 0.0, 2.178441, 2.592993, 5.30457, 1.575011, 0.0, 0.831551, 1.727915, 0.0, 2.197441, 0.0]

[convolutional.Conv3D.5] 2 3x3x3 filters on 6x4x4x2 input, strides=(1,1,1), padding='valid', data_format='channels_last', dilation_rate=(2,1,1), activation='relu', use_bias=True


In [9]:
data_in_shape = (6, 4, 4, 2)
conv = Conv3D(2, (3,3,3), strides=(1,1,1), padding='valid',
              data_format='channels_last', dilation_rate=(2,1,1),
              activation='relu', use_bias=True)

layer_0 = Input(shape=data_in_shape)
layer_1 = conv(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)

# set weights to random (use seed for reproducibility)
weights = []
for w in model.get_weights():
    np.random.seed(135)
    weights.append(2 * np.random.random(w.shape) - 1)
model.set_weights(weights)
print('W shape:', weights[0].shape)
print('W:', format_decimal(weights[0].ravel().tolist()))
print('b shape:', weights[1].shape)
print('b:', format_decimal(weights[1].ravel().tolist()))

data_in = 2 * np.random.random(data_in_shape) - 1
result = model.predict(np.array([data_in]))
data_out_shape = result[0].shape
data_in_formatted = format_decimal(data_in.ravel().tolist())
data_out_formatted = format_decimal(result[0].ravel().tolist())
print('')
print('in shape:', data_in_shape)
print('in:', data_in_formatted)
print('out shape:', data_out_shape)
print('out:', data_out_formatted)

DATA['convolutional.Conv3D.5'] = {
    'input': {'data': data_in_formatted, 'shape': data_in_shape},
    'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in weights],
    'expected': {'data': data_out_formatted, 'shape': data_out_shape}
}


W shape: (3, 3, 3, 2, 2)
W: [0.322658, -0.344611, -0.609204, 0.725965, 0.564265, -0.684916, 0.041211, 0.927911, -0.894888, 0.860527, -0.253361, -0.744674, -0.247768, -0.651881, -0.933814, 0.240578, 0.994504, 0.456195, -0.917821, 0.53731, -0.467305, -0.677727, -0.362642, 0.843688, 0.164517, 0.185971, -0.912632, 0.670918, 0.279219, 0.966766, 0.87306, -0.743233, 0.050612, 0.867488, -0.910847, -0.253644, 0.868941, 0.141799, 0.775647, 0.626506, 0.632139, 0.196889, -0.291305, -0.179118, 0.168738, -0.901492, -0.846903, 0.473427, -0.373693, 0.411135, 0.249088, -0.016873, 0.429492, 0.749292, 0.093128, 0.699456, -0.114177, -0.391394, 0.936061, -0.005816, 0.707379, 0.130148, 0.740962, 0.935769, 0.684376, -0.620705, 0.183572, 0.820191, 0.012644, 0.78349, 0.184382, -0.4305, 0.042159, -0.581926, 0.216851, -0.700663, 0.969676, 0.569067, 0.575643, 0.519852, 0.314757, 0.687164, 0.60089, -0.04363, -0.203202, -0.931233, -0.846168, 0.680137, -0.35765, -0.102437, -0.53349, 0.226947, 0.276121, 0.134919, -0.404994, 0.808531, -0.391874, 0.463485, 0.638601, 0.854777, 0.524508, -0.411623, -0.944604, 0.959551, -0.381131, -0.569812, -0.10935, 0.627463]
b shape: (2,)
b: [0.322658, -0.344611]

in shape: (6, 4, 4, 2)
in: [-0.609204, 0.725965, 0.564265, -0.684916, 0.041211, 0.927911, -0.894888, 0.860527, -0.253361, -0.744674, -0.247768, -0.651881, -0.933814, 0.240578, 0.994504, 0.456195, -0.917821, 0.53731, -0.467305, -0.677727, -0.362642, 0.843688, 0.164517, 0.185971, -0.912632, 0.670918, 0.279219, 0.966766, 0.87306, -0.743233, 0.050612, 0.867488, -0.910847, -0.253644, 0.868941, 0.141799, 0.775647, 0.626506, 0.632139, 0.196889, -0.291305, -0.179118, 0.168738, -0.901492, -0.846903, 0.473427, -0.373693, 0.411135, 0.249088, -0.016873, 0.429492, 0.749292, 0.093128, 0.699456, -0.114177, -0.391394, 0.936061, -0.005816, 0.707379, 0.130148, 0.740962, 0.935769, 0.684376, -0.620705, 0.183572, 0.820191, 0.012644, 0.78349, 0.184382, -0.4305, 0.042159, -0.581926, 0.216851, -0.700663, 0.969676, 0.569067, 0.575643, 0.519852, 0.314757, 0.687164, 0.60089, -0.04363, -0.203202, -0.931233, -0.846168, 0.680137, -0.35765, -0.102437, -0.53349, 0.226947, 0.276121, 0.134919, -0.404994, 0.808531, -0.391874, 0.463485, 0.638601, 0.854777, 0.524508, -0.411623, -0.944604, 0.959551, -0.381131, -0.569812, -0.10935, 0.627463, -0.995357, -0.949271, -0.494747, -0.143052, 0.947671, 0.594979, 0.238096, 0.789243, -0.93759, -0.506457, -0.143559, -0.841988, -0.962413, -0.924971, -0.93101, -0.211417, 0.444154, 0.971367, -0.103203, 0.726161, 0.754431, -0.219336, 0.243776, -0.698809, 0.230593, -0.719426, 0.3884, 0.746813, -0.103399, 0.78209, -0.817362, 0.396178, -0.545125, 0.988942, -0.667292, 0.608545, -0.753496, -0.733946, 0.359038, -0.873391, -0.523842, 0.369077, -0.775141, -0.449362, 0.279211, 0.851512, -0.469242, 0.67692, 0.925876, 0.589184, 0.099679, 0.342646, -0.613673, -0.831575, 0.009613, 0.124606, -0.930199, -0.792013, 0.72834, 0.161132, -0.135151, 0.560506, -0.363891, -0.728247, -0.957973, -0.824886, -0.075724, -0.411743, 0.12568, -0.476858, -0.410676, 0.517554, 0.634371, -0.566063, 0.801021, 0.79695, -0.923366, -0.464887, 0.00203, -0.364165, -0.286487, 0.499934, -0.754173, 0.777071, 0.543449, -0.113287]
out shape: (2, 2, 2, 2)
out: [0.0, 0.461288, 2.838303, 0.0, 3.493186, 0.0, 0.0, 5.648571, 3.226859, 0.418373, 0.559621, 0.0, 0.0, 1.553572, 0.0, 1.209245]

[convolutional.Conv3D.6] 2 3x3x3 filters on 4x4x3x2 input, strides=(1,1,1), padding='same', data_format='channels_last', dilation_rate=(1,2,1), activation='relu', use_bias=True


In [10]:
data_in_shape = (4, 4, 3, 2)
conv = Conv3D(2, (3,3,3), strides=(1,1,1), padding='same',
              data_format='channels_last', dilation_rate=(1,2,1),
              activation='relu', use_bias=True)

layer_0 = Input(shape=data_in_shape)
layer_1 = conv(layer_0)
model = Model(inputs=layer_0, outputs=layer_1)

# set weights to random (use seed for reproducibility)
weights = []
for w in model.get_weights():
    np.random.seed(136)
    weights.append(2 * np.random.random(w.shape) - 1)
model.set_weights(weights)
print('W shape:', weights[0].shape)
print('W:', format_decimal(weights[0].ravel().tolist()))
print('b shape:', weights[1].shape)
print('b:', format_decimal(weights[1].ravel().tolist()))

data_in = 2 * np.random.random(data_in_shape) - 1
result = model.predict(np.array([data_in]))
data_out_shape = result[0].shape
data_in_formatted = format_decimal(data_in.ravel().tolist())
data_out_formatted = format_decimal(result[0].ravel().tolist())
print('')
print('in shape:', data_in_shape)
print('in:', data_in_formatted)
print('out shape:', data_out_shape)
print('out:', data_out_formatted)

DATA['convolutional.Conv3D.6'] = {
    'input': {'data': data_in_formatted, 'shape': data_in_shape},
    'weights': [{'data': format_decimal(w.ravel().tolist()), 'shape': w.shape} for w in weights],
    'expected': {'data': data_out_formatted, 'shape': data_out_shape}
}


W shape: (3, 3, 3, 2, 2)
W: [-0.693568, -0.703664, -0.573076, -0.695162, -0.515857, -0.290619, -0.263499, -0.040709, 0.470823, -0.740796, -0.797397, -0.088149, -0.450146, 0.579621, 0.060592, -0.800019, 0.300738, -0.917187, 0.345993, -0.681917, 0.030527, -0.534115, -0.986003, -0.953496, -0.629845, 0.769929, -0.922151, 0.929369, -0.69533, 0.881718, -0.280246, 0.852326, 0.337779, 0.212053, 0.690342, -0.081277, 0.338323, -0.060838, 0.270912, 0.946583, -0.240731, 0.933253, -0.383504, 0.06092, 0.531656, -0.253211, -0.224346, -0.415647, -0.70179, 0.35408, -0.275745, 0.389024, 0.009464, -0.955892, 0.000472, -0.386814, -0.011964, -0.817395, 0.928428, 0.516839, -0.89985, -0.848247, 0.732777, 0.285802, -0.295655, 0.473086, 0.04724, 0.115051, -0.174483, -0.220515, -0.15857, -0.582415, -0.868713, -0.998911, 0.723742, 0.19427, -0.555718, 0.004113, -0.072888, 0.105489, -0.369058, 0.914084, 0.636234, 0.90759, 0.953839, -1.1e-05, 0.576238, 0.962419, -0.985831, 0.92927, -0.681443, 0.432718, 0.186253, -0.396745, 0.318541, 0.510095, -0.698246, 0.326728, -0.871058, 0.306373, 0.045015, 0.611467, -0.507264, 0.700192, 0.630117, 0.286906, 0.547071, 0.67345]
b shape: (2,)
b: [-0.693568, -0.703664]

in shape: (4, 4, 3, 2)
in: [-0.573076, -0.695162, -0.515857, -0.290619, -0.263499, -0.040709, 0.470823, -0.740796, -0.797397, -0.088149, -0.450146, 0.579621, 0.060592, -0.800019, 0.300738, -0.917187, 0.345993, -0.681917, 0.030527, -0.534115, -0.986003, -0.953496, -0.629845, 0.769929, -0.922151, 0.929369, -0.69533, 0.881718, -0.280246, 0.852326, 0.337779, 0.212053, 0.690342, -0.081277, 0.338323, -0.060838, 0.270912, 0.946583, -0.240731, 0.933253, -0.383504, 0.06092, 0.531656, -0.253211, -0.224346, -0.415647, -0.70179, 0.35408, -0.275745, 0.389024, 0.009464, -0.955892, 0.000472, -0.386814, -0.011964, -0.817395, 0.928428, 0.516839, -0.89985, -0.848247, 0.732777, 0.285802, -0.295655, 0.473086, 0.04724, 0.115051, -0.174483, -0.220515, -0.15857, -0.582415, -0.868713, -0.998911, 0.723742, 0.19427, -0.555718, 0.004113, -0.072888, 0.105489, -0.369058, 0.914084, 0.636234, 0.90759, 0.953839, -1.1e-05, 0.576238, 0.962419, -0.985831, 0.92927, -0.681443, 0.432718, 0.186253, -0.396745, 0.318541, 0.510095, -0.698246, 0.326728]
out shape: (4, 4, 3, 2)
out: [0.0, 2.447708, 0.0, 1.691985, 0.0, 0.0, 0.0, 0.358617, 0.0, 0.0, 0.924569, 0.0, 0.0, 0.0, 1.366897, 0.383573, 1.157531, 0.00974, 0.0, 1.26222, 0.126321, 0.0, 0.0, 0.0, 0.0, 1.953863, 1.052961, 0.738616, 0.753396, 0.0, 0.0, 0.0, 0.0, 0.0, 4.844479, 0.0, 0.0, 0.506653, 0.988058, 2.91366, 0.0, 2.596524, 0.0, 2.045312, 0.0, 1.122878, 2.051182, 0.0, 0.0, 2.086742, 0.0, 0.0, 0.0, 0.0, 0.388549, 0.0, 0.0, 0.0, 0.0, 1.598909, 0.0, 0.0, 0.18454, 0.0, 0.0, 0.0, 0.884488, 0.091716, 0.0, 2.729343, 0.599786, 0.0, 0.0, 0.72781, 0.0, 1.110617, 0.973615, 1.344564, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.291979, 0.0, 0.0, 0.837647, 0.384669, 0.0, 0.337923, 0.0, 0.617457, 3.802483, 0.0, 2.994639]

export for Keras.js tests


In [11]:
print(json.dumps(DATA))


{"convolutional.Conv3D.0": {"input": {"data": [-0.012235, 0.842256, -0.24031, -0.747101, 0.997502, 0.541847, 0.46022, -0.936762, 0.620677, -0.897006, 0.142436, -0.321119, -0.564347, 0.528326, 0.895515, 0.412205, 0.863293, -0.122241, 0.253835, 0.334585, -0.843125, -0.865964, -0.033224, 0.770519, 0.602345, 0.482129, -0.534779, 0.882924, 0.845752, -0.040631, 0.674428, -0.779344, 0.053258, -0.70852, -0.956298, -0.280062, 0.627909, 0.725718, -0.103394, -0.791248, 0.74844, -0.409891, 0.60642, -0.703554, -0.678996, -0.865614, 0.557983, 0.833801, 0.422953, -0.214554, 0.234606, -0.723627, 0.379456, -0.783448, 0.413208, 0.570398, -0.073524, -0.77024, -0.435243, -0.660294, 0.276208, -0.676938, 0.11366, 0.073336, 0.485568, -0.38602, 0.963383, -0.28129, 0.757856, 0.342945, 0.083787, 0.138463, 0.67179, 0.519043, 0.654146, 0.465576, 0.784872, -0.364478, -0.423446, -0.572558, -0.083876, -0.54903, -0.295645, 0.2349, 0.215547, -0.08804, -0.935702, -0.804254, 0.842041, 0.891524, 0.53582, 0.816882, -0.31899, 0.761039, 0.092443, -0.013288, 0.81033, 0.095114, 0.948258, -0.974729, -0.187374, -0.227432, 0.102514, -0.06137, 0.344298, -0.700357, 0.793725, -0.390442, 0.561325, 0.069437, 0.297307, -0.139713, 0.796003, -0.873413, 0.228104, -0.447393, -0.246792, 0.931166, 0.149258, -0.122052, 0.027526, 0.592017, 0.470149, 0.726634, 0.151077, -0.513093, 0.558565, -0.242539, -0.411284, -0.713388, -0.522539, 0.78801, -0.702311, -0.891064, -0.871238, -0.853877, 0.333665, 0.438522, -0.491023, -0.868654, -0.742188, -0.832603, -0.0604, 0.638536, -0.235743, 0.508252, -0.443941, 0.710677, 0.194301, 0.17929, 0.235854, -0.376182, -0.346676, 0.670737, -0.94404, -0.64212, -0.512999, 0.97764, 0.463103, 0.791414, 0.814634, 0.309827, -0.210593, -0.142933, 0.201831, -0.440759, -0.217137, -0.893463, -0.788414, -0.099469, 0.806605, -0.388143, -0.322186, 0.899655, 0.08527, -0.805031, 0.833597, 0.228396, -0.942825, -0.954152, 0.750815, 0.178301, -0.528541, -0.533345, -0.760308, -0.384974, -0.031988, 0.52894, -0.898135, 0.379761, 0.207095, 0.882652, 0.444118, -0.014279, -0.333001, -0.812251, -0.186455, -0.778118, -0.459847, 0.402095, 0.610382, 0.477684, -0.86357, -0.420118, 0.503587, -0.730952, 0.904388, 0.272979, -0.98017, -0.192944, 0.500952, 0.98925, 0.341975, -0.562962, 0.049861, -0.202414, -0.830072, -0.905711, -0.925835, 0.781849, -0.920591, -0.307965, -0.471503, -0.554001, 0.713829, -0.412998, -0.516655, -0.631432, 0.976909, -0.804501, 0.406977, 0.791254, 0.294557, 0.437734, -0.094275, -0.820109, -0.48955, 0.396867, -0.827079, -0.419779, -0.037705, -0.387553, 0.871437, -0.444237, -0.928096, 0.759913, 0.824767, -0.391281, 0.80935, 0.556379], "shape": [5, 5, 5, 2]}, "weights": [{"data": [-0.716739, -0.376911, 0.109585, -0.748377, -0.012235, 0.842256, -0.24031, -0.747101, 0.997502, 0.541847, 0.46022, -0.936762, 0.620677, -0.897006, 0.142436, -0.321119, -0.564347, 0.528326, 0.895515, 0.412205, 0.863293, -0.122241, 0.253835, 0.334585, -0.843125, -0.865964, -0.033224, 0.770519, 0.602345, 0.482129, -0.534779, 0.882924, 0.845752, -0.040631, 0.674428, -0.779344, 0.053258, -0.70852, -0.956298, -0.280062, 0.627909, 0.725718, -0.103394, -0.791248, 0.74844, -0.409891, 0.60642, -0.703554, -0.678996, -0.865614, 0.557983, 0.833801, 0.422953, -0.214554, 0.234606, -0.723627, 0.379456, -0.783448, 0.413208, 0.570398, -0.073524, -0.77024, -0.435243, -0.660294, 0.276208, -0.676938, 0.11366, 0.073336, 0.485568, -0.38602, 0.963383, -0.28129, 0.757856, 0.342945, 0.083787, 0.138463, 0.67179, 0.519043, 0.654146, 0.465576, 0.784872, -0.364478, -0.423446, -0.572558, -0.083876, -0.54903, -0.295645, 0.2349, 0.215547, -0.08804, -0.935702, -0.804254, 0.842041, 0.891524, 0.53582, 0.816882, -0.31899, 0.761039, 0.092443, -0.013288, 0.81033, 0.095114, 0.948258, -0.974729, -0.187374, -0.227432, 0.102514, -0.06137, 0.344298, -0.700357, 0.793725, -0.390442, 0.561325, 0.069437, 0.297307, -0.139713, 0.796003, -0.873413, 0.228104, -0.447393, -0.246792, 0.931166, 0.149258, -0.122052, 0.027526, 0.592017, 0.470149, 0.726634, 0.151077, -0.513093, 0.558565, -0.242539, -0.411284, -0.713388, -0.522539, 0.78801, -0.702311, -0.891064, -0.871238, -0.853877, 0.333665, 0.438522, -0.491023, -0.868654, -0.742188, -0.832603, -0.0604, 0.638536, -0.235743, 0.508252, -0.443941, 0.710677, 0.194301, 0.17929, 0.235854, -0.376182, -0.346676, 0.670737, -0.94404, -0.64212, -0.512999, 0.97764, 0.463103, 0.791414, 0.814634, 0.309827, -0.210593, -0.142933, 0.201831, -0.440759, -0.217137, -0.893463, -0.788414, -0.099469, 0.806605, -0.388143, -0.322186, 0.899655, 0.08527, -0.805031, 0.833597, 0.228396, -0.942825, -0.954152, 0.750815, 0.178301, -0.528541, -0.533345, -0.760308, -0.384974, -0.031988, 0.52894, -0.898135, 0.379761, 0.207095, 0.882652, 0.444118, -0.014279, -0.333001, -0.812251, -0.186455, -0.778118, -0.459847, 0.402095, 0.610382, 0.477684, -0.86357, -0.420118, 0.503587, -0.730952, 0.904388, 0.272979, -0.98017, -0.192944, 0.500952, 0.98925], "shape": [3, 3, 3, 2, 4]}, {"data": [-0.716739, -0.376911, 0.109585, -0.748377], "shape": [4]}], "expected": {"data": [-0.990212, 1.639581, -1.948825, -3.684331, 0.257052, -2.808133, 2.076573, -2.729982, -0.78123, 0.347783, 2.327393, -2.657676, -0.107308, -1.605268, 0.62405, -5.659127, 2.852406, -0.649643, 6.126531, -2.272969, 1.019947, 3.255988, -6.427436, -7.437248, -4.01012, -1.170293, 1.765438, 6.611716, -0.59429, -0.561376, -0.271424, 1.316552, 1.801865, -2.038508, -1.221814, -3.836679, -2.255499, -2.756532, -1.162019, -2.273401, 0.959788, -2.926484, 0.890316, -2.095109, -0.56757, 0.593196, -0.404296, -2.956032, 1.313724, 0.757657, 1.019654, -2.681708, -1.103542, 2.976485, 1.964336, -2.199447, -1.192246, -1.618244, 0.738719, 0.553589, -1.725408, -3.353908, -1.78493, -3.942136, 0.091989, 1.563757, 0.504778, 2.773416, -4.433075, -2.957799, -1.355837, -0.652115, -4.728858, -1.700152, 3.67987, 0.592441, -1.557015, 2.452404, 5.097181, 0.639657, -4.788903, -3.806307, 1.558109, 3.81415, 0.053524, 6.426715, -1.117815, 0.510982, -0.930588, 0.263227, 0.744451, -2.02314, -0.781206, -1.206907, -2.087747, 0.768416, -3.891211, 2.946293, 0.308395, 1.134286, -1.11568, 2.414839, 4.610423, -3.157369, -1.071085, -5.993021, -0.112579, -3.090427], "shape": [3, 3, 3, 4]}}, "convolutional.Conv3D.1": {"input": {"data": [0.54298, -0.369581, 0.787756, -0.413208, -0.451769, 0.474871, 0.955491, -0.993053, 0.892644, 0.317005, -0.299495, -0.282463, 0.092705, 0.847179, 0.355861, -0.356589, -0.34065, -0.644927, 0.294664, 0.525887, -0.45672, 0.109351, -0.232926, -0.322716, 0.708476, 0.133826, 0.942949, 0.509234, 0.666986, 0.647692, 0.46106, 0.294315, -0.531805, 0.742175, -0.943787, 0.452597, -0.223524, -0.821973, 0.130818, -0.241084, -0.709061, -0.410544, -0.779838, 0.3187, 0.449769, -0.098487, -0.717268, -0.820627, -0.03977, 0.212835, 0.322279, -0.365277, 0.551029, -0.791009, 0.454023, -0.151234, 0.241568, 0.728562, 0.92247, -0.61221, 0.023427, 0.923886, -0.594403, 0.111887, 0.721627, -0.170876, 0.134098, -0.790903, -0.692903, 0.184462, -0.64679, -0.812958, -0.352592, 0.373439, 0.244427, 0.524303, 0.772487, -0.929582, 0.019085, -0.569751, 0.950518, 0.539197, 0.102938, -0.81072, -0.658932, 0.458097, -0.984345, -0.563091, -0.842868, -0.816919, 0.144705, 0.110019, 0.637162, -0.055083, -0.830439, -0.275994, -0.926286, 0.692921, -0.816955, 0.94607, 0.303029, 0.221167, 0.703979, 0.010576, 0.093083, 0.709286, -0.301982, 0.70202, 0.968466, 0.722557, -0.378228, 0.671395, -0.132298, 0.81306, -0.922057, -0.662015, 0.404419, -0.017544, 0.939241, 0.452875, -0.436359, -0.918861, -0.685562, 0.2343, -0.344733, 0.058154, 0.883477, -0.027478], "shape": [4, 4, 4, 2]}, "weights": [{"data": [0.300307, 0.896218, -0.223942, 0.282592, 0.381024, -0.746781, -0.521066, -0.491686, -0.147117, 0.678005, 0.490067, -0.238641, -0.476614, -0.893332, -0.126207, -0.582042, 0.188822, -0.802193, -0.551813, 0.168525, 0.918162, -0.580232, 0.322675, 0.005226, -0.359417, -0.74987, 0.613778, 0.97392, 0.086083, -0.537354, 0.207025, -0.646608, 0.773075, 0.178045, 0.442345, -0.448659, 0.576229, -0.734755, -0.200568, 0.259648, -0.151913, -0.676254, 0.040688, 0.214083, 0.161611, 0.642232, 0.969984, 0.86899, 0.80611, -0.323948, 0.566489, 0.487469, 0.161171, -0.134673, 0.335856, -0.526625, -0.096527, 0.839995, 0.933746, 0.538101, -0.346576, 0.24568, -0.616796, -0.503357, -0.766323, -0.979349, 0.697389, 0.061332, -0.01233, 0.304615, -0.546648, 0.234325, -0.598896, -0.018136, 0.89706, 0.963941, -0.653697, 0.485039, -0.227064, 0.302214, 0.486927, -0.504459, -0.015408, -0.1505, -0.419861, 0.973378, -0.3211, -0.600593, 0.657395, -0.274736, 0.42005, -0.193936, -0.222912, 0.005268, 0.593099, -0.977881, -0.911958, 0.794233, 0.506375, 0.724717, 0.980406, 0.160665, 0.907777, -0.158316, -0.663804, -0.93618, 0.166131, 0.47488], "shape": [3, 3, 3, 2, 2]}], "expected": {"data": [0.028378, 0.571757, 0.006776, 0.886406, 0.155123, 0.446979, 0.280513, 0.76513, 0.107532, 0.596331, 0.958001, 0.078373, 0.762681, 0.216897, 0.14058, 0.000131], "shape": [2, 2, 2, 2]}}, "convolutional.Conv3D.2": {"input": {"data": [0.657275, 0.563366, 0.603194, -0.286196, 0.924244, -0.28752, 0.637161, 0.810376, -0.914473, -0.967621, 0.112092, -0.838944, 0.928514, -0.182969, -0.348933, -0.07114, 0.743005, -0.294021, -0.568579, -0.596645, -0.517913, -0.571138, -0.497605, -0.358416, 0.073639, -0.83844, -0.915183, 0.412981, 0.909286, 0.226941, 0.373944, -0.563635, 0.753859, -0.681375, 0.022101, -0.582124, -0.280116, -0.82489, -0.757258, 0.989785, 0.028165, 0.366484, -0.778942, 0.27204, -0.25007, -0.967536, 0.28709, -0.797754, -0.68149, 0.394872, -0.43468, 0.665998, 0.869927, -0.606877, -0.134099, 0.652508, -0.603352, 0.633151, -0.836046, -0.196456, 0.947196, 0.760248, -0.921493, -0.372249, -0.982245, -0.864395, -0.339177, -0.904094, 0.959217, 0.147402, 0.504567, 0.769068, 0.629401, -0.441415, 0.813767, -0.350138, 0.864937, -0.10205, 0.145076, -0.590264, 0.733088, -0.45583, 0.040498, -0.05256, 0.022563, -0.375014, 0.700348, 0.75455, 0.610168, 0.194477, -0.810708, -0.19662, -0.842144, 0.285245, -0.305602, -0.714785], "shape": [4, 4, 3, 2]}, "weights": [{"data": [0.561808, -0.237711, 0.657275, 0.563366, 0.603194, -0.286196, 0.924244, -0.28752, 0.637161, 0.810376, -0.914473, -0.967621, 0.112092, -0.838944, 0.928514, -0.182969, -0.348933, -0.07114, 0.743005, -0.294021, -0.568579, -0.596645, -0.517913, -0.571138, -0.497605, -0.358416, 0.073639, -0.83844, -0.915183, 0.412981, 0.909286, 0.226941, 0.373944, -0.563635, 0.753859, -0.681375, 0.022101, -0.582124, -0.280116, -0.82489, -0.757258, 0.989785, 0.028165, 0.366484, -0.778942, 0.27204, -0.25007, -0.967536, 0.28709, -0.797754, -0.68149, 0.394872, -0.43468, 0.665998, 0.869927, -0.606877, -0.134099, 0.652508, -0.603352, 0.633151, -0.836046, -0.196456, 0.947196, 0.760248, -0.921493, -0.372249, -0.982245, -0.864395, -0.339177, -0.904094, 0.959217, 0.147402, 0.504567, 0.769068, 0.629401, -0.441415, 0.813767, -0.350138, 0.864937, -0.10205, 0.145076, -0.590264, 0.733088, -0.45583, 0.040498, -0.05256, 0.022563, -0.375014, 0.700348, 0.75455, 0.610168, 0.194477, -0.810708, -0.19662, -0.842144, 0.285245, -0.305602, -0.714785, -0.389563, 0.487303, 0.384339, -0.825992, 0.655456, 0.015094, 0.069932, -0.350014, -0.852013, -0.034763], "shape": [3, 3, 3, 2, 2]}, {"data": [0.561808, -0.237711], "shape": [2]}], "expected": {"data": [0.0, 0.0, 0.202974, 0.32343, 1.256458, 0.0, 0.0, 0.59227, 0.0, 0.0, 0.0, 1.277499, 0.514505, 3.565827, 1.717093, 0.0, 0.518093, 2.13386, 0.597589, 0.0, 0.145479, 0.0, 0.411267, 0.096419, 0.0, 0.911234, 0.0, 0.0, 0.0, 3.251087, 6.37503, 3.037017, 2.607065, 0.0, 0.0, 1.6602, 1.164416, 2.613473, 3.836789, 0.679142, 0.0, 0.0, 2.195455, 0.0, 0.0, 5.636247, 0.0, 0.948504, 0.0, 0.0, 0.0, 0.583949, 0.805164, 3.08051, 0.0, 0.0, 3.62315, 1.695895, 2.409393, 0.738817, 0.177071, 1.258827, 1.401754, 0.0, 0.0, 0.919304, 0.0, 0.423109, 2.58729, 0.0, 1.76654, 0.0, 1.167698, 0.297612, 0.896641, 0.102354, 0.287512, 0.0, 0.0, 1.459626, 0.0, 1.226061, 1.221153, 0.68316, 1.060495, 1.016869, 3.17602, 2.120962, 0.636249, 2.750501, 0.0, 0.0, 0.0, 0.401625, 0.0, 0.0], "shape": [4, 4, 3, 2]}}, "convolutional.Conv3D.3": {"input": {"data": [-0.780888, -0.715513, -0.121464, 0.475806, -0.594872, -0.377686, 0.116261, 0.792104, -0.256096, 0.879075, -0.36824, 0.543525, 0.394369, 0.858105, -0.755411, -0.121975, -0.06772, -0.070284, -0.00725, 0.064283, -0.248044, -0.679932, -0.289603, 0.951553, 0.722203, 0.732689, 0.334081, 0.730298, -0.464328, 0.955306, 0.991716, -0.649746, -0.679444, 0.241959, -0.305542, 0.442359, 0.66645, 0.09566, 0.097175, -0.583151, -0.84885, -0.88039, -0.245959, 0.440772, -0.576763, -0.839252, -0.189355, -0.312547, -0.240347, 0.037718, 0.270261, 0.740958, -0.080857, -0.34412, -0.776913, 0.119299, 0.715073, 0.65029, -0.303087, -0.742422, 0.283872, -0.453492, 0.657322, 0.294547, -0.211275, -0.676264, -0.362203, -0.414399, -0.820797, 0.065655, 0.892713, 0.922155, -0.495448, 0.794696, -0.998576, 0.689174, -0.94489, -0.97599, 0.608171, 0.634289, 0.350419, -0.967604, -0.024661, -0.816395, 0.316404, -0.849656, 0.324503, 0.389871, 0.534612, -0.283795, 0.495473, 0.079537, 0.128614, -0.781724, -0.215271, -0.022468], "shape": [4, 4, 3, 2]}, "weights": [{"data": [-0.160983, -0.740678, -0.780888, -0.715513, -0.121464, 0.475806, -0.594872, -0.377686, 0.116261, 0.792104, -0.256096, 0.879075, -0.36824, 0.543525, 0.394369, 0.858105, -0.755411, -0.121975, -0.06772, -0.070284, -0.00725, 0.064283, -0.248044, -0.679932, -0.289603, 0.951553, 0.722203, 0.732689, 0.334081, 0.730298, -0.464328, 0.955306, 0.991716, -0.649746, -0.679444, 0.241959, -0.305542, 0.442359, 0.66645, 0.09566, 0.097175, -0.583151, -0.84885, -0.88039, -0.245959, 0.440772, -0.576763, -0.839252, -0.189355, -0.312547, -0.240347, 0.037718, 0.270261, 0.740958, -0.080857, -0.34412, -0.776913, 0.119299, 0.715073, 0.65029, -0.303087, -0.742422, 0.283872, -0.453492, 0.657322, 0.294547, -0.211275, -0.676264, -0.362203, -0.414399, -0.820797, 0.065655], "shape": [3, 3, 2, 2, 2]}, {"data": [-0.160983, -0.740678], "shape": [2]}], "expected": {"data": [0.09816, 0.0, 1.235674, 0.0, 0.0, 0.0, 2.877764, 1.905926, 1.647481, 3.613319, 0.795886, 1.891695, 0.0, 0.0, 0.0, 0.0, 0.357909, 0.0, 0.0, 0.0, 0.734974, 0.0, 0.0, 0.0, 0.132112, 0.0, 0.0, 1.763944, 0.613645, 0.092832, 0.0, 0.0, 0.0, 0.0, 0.872912, 0.0, 2.011758, 0.754629, 0.0, 0.0, 0.018068, 0.0, 0.0, 0.0, 1.061294, 0.0, 0.0, 1.852663], "shape": [2, 4, 3, 2]}}, "convolutional.Conv3D.4": {"input": {"data": [0.255491, 0.763798, 0.330149, 0.766733, 0.42334, 0.330543, -0.75135, -0.922873, -0.583415, -0.466281, -0.717938, 0.731792, -0.400509, 0.612512, -0.498783, -0.14186, -0.737372, 0.781319, 0.651852, 0.673768, 0.431092, -0.299636, -0.592396, -0.25223, 0.660295, 0.014915, -0.737261, -0.683528, 0.991536, 0.863046, -0.857707, -0.709703, 0.619649, 0.440344, -0.075421, 0.792503, -0.7677, 0.799309, -0.819924, 0.230663, 0.585082, -0.65765, 0.912941, 0.378832, -0.756722, -0.282432, -0.619629, 0.971307, 0.261786, 0.695286, 0.447511, -0.336526, 0.823161, 0.964889, -0.567008, -0.256448, -0.630859, -0.033653, -0.068675, -0.307193, -0.746842, -0.749483, -0.750777, 0.40137, 0.546076, 0.989245, -0.156364, -0.439605, -0.342656, -0.89142, 0.671516, -0.96313, 0.415092, 0.10452, -0.933763, -0.493381, 0.680007, -0.064914, 0.552154, 0.420418, -0.104774, 0.339607, -0.840586, 0.34762, 0.456402, 0.917853, 0.427665, 0.478747, 0.994486, 0.549693, -0.779373, -0.078222, 0.580719, -0.961111, 0.459178, -0.165215, -0.315997, -0.727695, -0.717506, -0.101921, -0.155999, 0.242368, -0.952067, -0.00297, -0.331119, -0.101121, 0.979275, 0.999252, 0.521731, -0.683745, 0.13268, -0.02283, -0.333171, 0.084336, 0.967829, -0.243099, -0.65592, 0.265795, -0.738191, 0.748515, 0.055295, -0.71117, -0.849279, 0.946324, 0.91352, -0.922913, 0.905676, 0.42188, -0.327285, -0.631911, -0.775742, -0.696021, 0.996116, 0.288415, -0.134258, -0.118686, 0.047865, 0.599197, -0.267092, 0.326933, -0.118315, 0.288843, -0.088352, 0.873786, 0.367592, -0.2835, 0.062748, 0.124767, -0.306431, -0.797375, -0.338658, 0.090141, 0.399011, 0.270202, 0.735773, 0.576237, 0.49903, 0.950745, 0.445642, 0.789956, -0.591685, -0.091733, 0.452208, 0.572278, -0.014814, 0.178051, 0.750801, -0.077224, -0.005775, -0.548912, -0.58962, -0.665754, 0.286856, 0.843047, -0.17934, -0.562433, 0.751457, -0.253229, -0.003361, -0.883475, 0.401674, 0.241623, -0.285594, 0.401469, 0.069789, 0.889598, 0.970932, -0.905932, -0.699628, 0.545623, 0.781924, 0.834341, 0.167673, -0.684819, -0.554758, 0.87348, 0.113279, -0.027234, -0.154146, -0.572187, -0.082501, 0.745653, 0.437841, 0.672742, -0.20552, -0.731811, 0.639947, 0.865838, 0.04588, 0.139607, 0.521049, 0.906016, 0.439766, 0.161608, 0.988467, 0.116776, -0.141933, 0.658322, 0.407769, 0.706881, 0.278246, -0.176282, -0.232731, 0.89114, 0.906824, 0.486935, -0.599041, 0.191432, 0.812589, -0.281513, 0.47336, 0.24849, -0.912168, -0.017699, 0.072546, 0.9249, 0.367322, -0.154274, -0.847056, -0.207236, 0.571427, -0.904635, 0.260295, -0.835689, -0.578835, 0.918011, 0.048527, -0.674753, -0.7327, -0.209332, 0.87192, -0.526782, -0.47431, 0.198573, 0.274862, -0.570459, 0.357794, -0.923848, -0.326055, -0.621309, -0.298064, 0.588621, -0.434224, 0.26631, -0.458417, 0.699587, 0.586844, 0.157536, 0.777812, -0.811094, 0.749212, -0.492543, -0.482318, 0.783566, -0.881362, -0.826629, -0.808297, 0.990087, -0.97475, -0.076858, 0.684759, -0.449941, -0.237982, -0.847246, -0.809583, 0.119563, -0.316425, -0.679099], "shape": [6, 6, 4, 2]}, "weights": [{"data": [0.622807, -0.104472, 0.255491, 0.763798, 0.330149, 0.766733, 0.42334, 0.330543, -0.75135, -0.922873, -0.583415, -0.466281, -0.717938, 0.731792, -0.400509, 0.612512, -0.498783, -0.14186, -0.737372, 0.781319, 0.651852, 0.673768, 0.431092, -0.299636, -0.592396, -0.25223, 0.660295, 0.014915, -0.737261, -0.683528, 0.991536, 0.863046, -0.857707, -0.709703, 0.619649, 0.440344, -0.075421, 0.792503, -0.7677, 0.799309, -0.819924, 0.230663, 0.585082, -0.65765, 0.912941, 0.378832, -0.756722, -0.282432, -0.619629, 0.971307, 0.261786, 0.695286, 0.447511, -0.336526, 0.823161, 0.964889, -0.567008, -0.256448, -0.630859, -0.033653, -0.068675, -0.307193, -0.746842, -0.749483, -0.750777, 0.40137, 0.546076, 0.989245, -0.156364, -0.439605, -0.342656, -0.89142, 0.671516, -0.96313, 0.415092, 0.10452, -0.933763, -0.493381, 0.680007, -0.064914, 0.552154, 0.420418, -0.104774, 0.339607, -0.840586, 0.34762, 0.456402, 0.917853, 0.427665, 0.478747, 0.994486, 0.549693, -0.779373, -0.078222, 0.580719, -0.961111, 0.459178, -0.165215, -0.315997, -0.727695, -0.717506, -0.101921, -0.155999, 0.242368, -0.952067, -0.00297, -0.331119, -0.101121], "shape": [3, 3, 3, 2, 2]}, {"data": [0.622807, -0.104472], "shape": [2]}], "expected": {"data": [1.786687, 1.633532, 0.087363, 0.705533, 0.0, 0.0, 2.178441, 2.592993, 5.30457, 1.575011, 0.0, 0.831551, 1.727915, 0.0, 2.197441, 0.0], "shape": [2, 2, 2, 2]}}, "convolutional.Conv3D.5": {"input": {"data": [-0.609204, 0.725965, 0.564265, -0.684916, 0.041211, 0.927911, -0.894888, 0.860527, -0.253361, -0.744674, -0.247768, -0.651881, -0.933814, 0.240578, 0.994504, 0.456195, -0.917821, 0.53731, -0.467305, -0.677727, -0.362642, 0.843688, 0.164517, 0.185971, -0.912632, 0.670918, 0.279219, 0.966766, 0.87306, -0.743233, 0.050612, 0.867488, -0.910847, -0.253644, 0.868941, 0.141799, 0.775647, 0.626506, 0.632139, 0.196889, -0.291305, -0.179118, 0.168738, -0.901492, -0.846903, 0.473427, -0.373693, 0.411135, 0.249088, -0.016873, 0.429492, 0.749292, 0.093128, 0.699456, -0.114177, -0.391394, 0.936061, -0.005816, 0.707379, 0.130148, 0.740962, 0.935769, 0.684376, -0.620705, 0.183572, 0.820191, 0.012644, 0.78349, 0.184382, -0.4305, 0.042159, -0.581926, 0.216851, -0.700663, 0.969676, 0.569067, 0.575643, 0.519852, 0.314757, 0.687164, 0.60089, -0.04363, -0.203202, -0.931233, -0.846168, 0.680137, -0.35765, -0.102437, -0.53349, 0.226947, 0.276121, 0.134919, -0.404994, 0.808531, -0.391874, 0.463485, 0.638601, 0.854777, 0.524508, -0.411623, -0.944604, 0.959551, -0.381131, -0.569812, -0.10935, 0.627463, -0.995357, -0.949271, -0.494747, -0.143052, 0.947671, 0.594979, 0.238096, 0.789243, -0.93759, -0.506457, -0.143559, -0.841988, -0.962413, -0.924971, -0.93101, -0.211417, 0.444154, 0.971367, -0.103203, 0.726161, 0.754431, -0.219336, 0.243776, -0.698809, 0.230593, -0.719426, 0.3884, 0.746813, -0.103399, 0.78209, -0.817362, 0.396178, -0.545125, 0.988942, -0.667292, 0.608545, -0.753496, -0.733946, 0.359038, -0.873391, -0.523842, 0.369077, -0.775141, -0.449362, 0.279211, 0.851512, -0.469242, 0.67692, 0.925876, 0.589184, 0.099679, 0.342646, -0.613673, -0.831575, 0.009613, 0.124606, -0.930199, -0.792013, 0.72834, 0.161132, -0.135151, 0.560506, -0.363891, -0.728247, -0.957973, -0.824886, -0.075724, -0.411743, 0.12568, -0.476858, -0.410676, 0.517554, 0.634371, -0.566063, 0.801021, 0.79695, -0.923366, -0.464887, 0.00203, -0.364165, -0.286487, 0.499934, -0.754173, 0.777071, 0.543449, -0.113287], "shape": [6, 4, 4, 2]}, "weights": [{"data": [0.322658, -0.344611, -0.609204, 0.725965, 0.564265, -0.684916, 0.041211, 0.927911, -0.894888, 0.860527, -0.253361, -0.744674, -0.247768, -0.651881, -0.933814, 0.240578, 0.994504, 0.456195, -0.917821, 0.53731, -0.467305, -0.677727, -0.362642, 0.843688, 0.164517, 0.185971, -0.912632, 0.670918, 0.279219, 0.966766, 0.87306, -0.743233, 0.050612, 0.867488, -0.910847, -0.253644, 0.868941, 0.141799, 0.775647, 0.626506, 0.632139, 0.196889, -0.291305, -0.179118, 0.168738, -0.901492, -0.846903, 0.473427, -0.373693, 0.411135, 0.249088, -0.016873, 0.429492, 0.749292, 0.093128, 0.699456, -0.114177, -0.391394, 0.936061, -0.005816, 0.707379, 0.130148, 0.740962, 0.935769, 0.684376, -0.620705, 0.183572, 0.820191, 0.012644, 0.78349, 0.184382, -0.4305, 0.042159, -0.581926, 0.216851, -0.700663, 0.969676, 0.569067, 0.575643, 0.519852, 0.314757, 0.687164, 0.60089, -0.04363, -0.203202, -0.931233, -0.846168, 0.680137, -0.35765, -0.102437, -0.53349, 0.226947, 0.276121, 0.134919, -0.404994, 0.808531, -0.391874, 0.463485, 0.638601, 0.854777, 0.524508, -0.411623, -0.944604, 0.959551, -0.381131, -0.569812, -0.10935, 0.627463], "shape": [3, 3, 3, 2, 2]}, {"data": [0.322658, -0.344611], "shape": [2]}], "expected": {"data": [0.0, 0.461288, 2.838303, 0.0, 3.493186, 0.0, 0.0, 5.648571, 3.226859, 0.418373, 0.559621, 0.0, 0.0, 1.553572, 0.0, 1.209245], "shape": [2, 2, 2, 2]}}, "convolutional.Conv3D.6": {"input": {"data": [-0.573076, -0.695162, -0.515857, -0.290619, -0.263499, -0.040709, 0.470823, -0.740796, -0.797397, -0.088149, -0.450146, 0.579621, 0.060592, -0.800019, 0.300738, -0.917187, 0.345993, -0.681917, 0.030527, -0.534115, -0.986003, -0.953496, -0.629845, 0.769929, -0.922151, 0.929369, -0.69533, 0.881718, -0.280246, 0.852326, 0.337779, 0.212053, 0.690342, -0.081277, 0.338323, -0.060838, 0.270912, 0.946583, -0.240731, 0.933253, -0.383504, 0.06092, 0.531656, -0.253211, -0.224346, -0.415647, -0.70179, 0.35408, -0.275745, 0.389024, 0.009464, -0.955892, 0.000472, -0.386814, -0.011964, -0.817395, 0.928428, 0.516839, -0.89985, -0.848247, 0.732777, 0.285802, -0.295655, 0.473086, 0.04724, 0.115051, -0.174483, -0.220515, -0.15857, -0.582415, -0.868713, -0.998911, 0.723742, 0.19427, -0.555718, 0.004113, -0.072888, 0.105489, -0.369058, 0.914084, 0.636234, 0.90759, 0.953839, -1.1e-05, 0.576238, 0.962419, -0.985831, 0.92927, -0.681443, 0.432718, 0.186253, -0.396745, 0.318541, 0.510095, -0.698246, 0.326728], "shape": [4, 4, 3, 2]}, "weights": [{"data": [-0.693568, -0.703664, -0.573076, -0.695162, -0.515857, -0.290619, -0.263499, -0.040709, 0.470823, -0.740796, -0.797397, -0.088149, -0.450146, 0.579621, 0.060592, -0.800019, 0.300738, -0.917187, 0.345993, -0.681917, 0.030527, -0.534115, -0.986003, -0.953496, -0.629845, 0.769929, -0.922151, 0.929369, -0.69533, 0.881718, -0.280246, 0.852326, 0.337779, 0.212053, 0.690342, -0.081277, 0.338323, -0.060838, 0.270912, 0.946583, -0.240731, 0.933253, -0.383504, 0.06092, 0.531656, -0.253211, -0.224346, -0.415647, -0.70179, 0.35408, -0.275745, 0.389024, 0.009464, -0.955892, 0.000472, -0.386814, -0.011964, -0.817395, 0.928428, 0.516839, -0.89985, -0.848247, 0.732777, 0.285802, -0.295655, 0.473086, 0.04724, 0.115051, -0.174483, -0.220515, -0.15857, -0.582415, -0.868713, -0.998911, 0.723742, 0.19427, -0.555718, 0.004113, -0.072888, 0.105489, -0.369058, 0.914084, 0.636234, 0.90759, 0.953839, -1.1e-05, 0.576238, 0.962419, -0.985831, 0.92927, -0.681443, 0.432718, 0.186253, -0.396745, 0.318541, 0.510095, -0.698246, 0.326728, -0.871058, 0.306373, 0.045015, 0.611467, -0.507264, 0.700192, 0.630117, 0.286906, 0.547071, 0.67345], "shape": [3, 3, 3, 2, 2]}, {"data": [-0.693568, -0.703664], "shape": [2]}], "expected": {"data": [0.0, 2.447708, 0.0, 1.691985, 0.0, 0.0, 0.0, 0.358617, 0.0, 0.0, 0.924569, 0.0, 0.0, 0.0, 1.366897, 0.383573, 1.157531, 0.00974, 0.0, 1.26222, 0.126321, 0.0, 0.0, 0.0, 0.0, 1.953863, 1.052961, 0.738616, 0.753396, 0.0, 0.0, 0.0, 0.0, 0.0, 4.844479, 0.0, 0.0, 0.506653, 0.988058, 2.91366, 0.0, 2.596524, 0.0, 2.045312, 0.0, 1.122878, 2.051182, 0.0, 0.0, 2.086742, 0.0, 0.0, 0.0, 0.0, 0.388549, 0.0, 0.0, 0.0, 0.0, 1.598909, 0.0, 0.0, 0.18454, 0.0, 0.0, 0.0, 0.884488, 0.091716, 0.0, 2.729343, 0.599786, 0.0, 0.0, 0.72781, 0.0, 1.110617, 0.973615, 1.344564, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.291979, 0.0, 0.0, 0.837647, 0.384669, 0.0, 0.337923, 0.0, 0.617457, 3.802483, 0.0, 2.994639], "shape": [4, 4, 3, 2]}}}