Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution


In [ ]:


In [1]:
import numpy as np
import pandas as pd
import pyther as pt

In [ ]:


In [2]:
CONSTANTES_PARAMETROS_CRITICOS = pd.read_csv("tablas_gfs/constantes_ecuaciones_criticas.csv", sep=" ")
CONSTANTES_PARAMETROS_CRITICOS


Out[2]:
constantes Tc Pc Vc
0 a 0.9889 0.00939 -0.2266
1 b 0.6990 -0.14041 86.1539
2 c 0.8607 0.00000 0.0000

In [3]:
CONSTANTES_PARAMETROS_CRITICOS["Tc"]


Out[3]:
0    0.9889
1    0.6990
2    0.8607
Name: Tc, dtype: float64

In [4]:
CONSTANTES_PARAMETROS_CRITICOS.iloc[0]


Out[4]:
constantes          a
Tc             0.9889
Pc            0.00939
Vc            -0.2266
Name: 0, dtype: object

In [ ]:


In [ ]:


In [ ]:


In [5]:
CONSTANTES_PARAMETROS_EBULLICION = pd.read_csv("tablas_gfs/constantes_ecuaciones_ebullicion.csv", sep=" ")
CONSTANTES_PARAMETROS_EBULLICION


Out[5]:
constantes Tb
0 a 0.6583
1 b 1.6868
2 c 84.3395

In [6]:
a, b, c = CONSTANTES_PARAMETROS_EBULLICION["Tb"]
print(a, b, c)


0.6583 1.6868 84.3395

In [ ]:


In [7]:
GRUPOS_FUNCIONALES_EBULLICION = pd.read_csv("tablas_gfs/punto_ebullicion_gfs.csv", sep=" ", index_col="GroupNumber")
GRUPOS_FUNCIONALES_EBULLICION


Out[7]:
GroupContribution(K) MeanAbsoluteError(%) MeanAbsoluteError(K) StandardDeviation(K) NumberofComponents
GroupNumber
1 177.3066 1.36 5.86 7.89 1841.0
2 251.8338 1.63 6.97 9.36 267.0
3 157.9527 1.24 5.89 7.74 168.0
4 239.4531 1.20 5.40 7.12 1153.0
5 240.6785 1.15 5.29 7.04 391.0
6 249.5809 1.79 7.63 10.76 98.0
7 266.8769 1.66 7.01 9.30 1024.0
8 201.0115 1.06 5.55 7.03 183.0
9 239.4957 1.59 6.68 8.92 330.0
10 222.1163 1.28 5.51 7.50 156.0
11 209.9749 0.99 4.30 6.47 50.0
12 250.9584 1.36 5.63 8.04 78.0
13 291.2291 1.91 8.25 10.92 124.0
14 244.3581 1.38 7.25 9.89 25.0
15 235.3462 1.34 6.76 8.93 684.0
16 315.4128 1.26 6.43 8.57 539.0
17 348.2779 1.52 7.44 9.78 289.0
18 367.9649 1.09 6.11 7.82 64.0
19 106.5492 1.90 6.48 9.62 39.0
20 49.2701 3.80 8.84 10.07 9.0
21 53.1871 2.46 8.43 10.70 150.0
22 78.7578 2.48 8.26 10.54 29.0
23 103.5672 1.75 4.43 5.90 3.0
24 -19.5575 2.02 7.88 9.93 28.0
25 330.9117 2.00 8.23 10.71 120.0
26 287.1863 1.76 6.90 9.23 49.0
27 267.4170 2.21 8.59 11.53 55.0
28 205.7363 1.81 8.78 11.39 73.0
29 292.5816 1.98 6.90 9.29 35.0
30 419.4959 2.14 8.06 9.95 68.0
... ... ... ... ... ...
84 1149.9670 0.71 3.16 3.68 6.0
85 1209.2972 0.30 1.20 1.44 3.0
86 347.7717 0.00 0.00 0.00 1.0
87 664.0903 3.31 9.20 11.62 5.0
88 957.6388 3.02 13.41 15.64 12.0
89 928.9954 2.80 10.11 12.53 22.0
90 560.1024 0.78 4.02 7.04 11.0
91 229.2288 1.42 5.90 7.01 6.0
92 606.1797 1.05 5.77 7.73 25.0
93 215.3416 2.30 8.38 11.33 37.0
94 273.1755 0.00 0.00 0.00 1.0
95 1218.1878 0.00 0.00 0.00 1.0
96 2082.3288 1.46 7.71 8.06 4.0
97 201.3224 1.57 6.16 8.20 19.0
99 886.7613 1.29 6.12 7.48 11.0
100 1045.0343 0.00 0.00 0.00 1.0
101 -109.6269 1.35 5.24 5.87 3.0
102 111.0590 2.43 8.89 12.58 8.0
103 1573.3769 0.56 2.89 2.90 2.0
104 1483.1289 0.43 2.03 2.03 2.0
105 1506.8136 1.23 6.50 7.89 3.0
106 484.6371 1.91 9.28 10.29 4.0
107 1379.4485 1.34 7.51 7.51 2.0
108 659.7336 1.57 6.51 7.25 3.0
109 492.0707 0.94 3.91 4.73 4.0
111 971.0365 0.00 0.00 0.00 1.0
113 428.8911 0.40 1.70 1.81 4.0
115 612.9506 1.17 5.07 5.15 3.0
116 562.1791 0.00 0.00 0.00 1.0
117 761.6006 1.29 5.49 5.53 2.0

113 rows × 5 columns


In [8]:
#.ix is deprecated. Please use
#.loc for label based indexing or
#.iloc for positional indexing

GRUPOS_FUNCIONALES_EBULLICION.loc[1]["GroupContribution(K)"]


Out[8]:
177.3066

In [9]:
f1 = 6
f2 = 2
f3 = 2

gf1 = GRUPOS_FUNCIONALES_EBULLICION.loc[1]["GroupContribution(K)"] * f1
gf2 = GRUPOS_FUNCIONALES_EBULLICION.loc[4]["GroupContribution(K)"] * f2
gf3 = GRUPOS_FUNCIONALES_EBULLICION.loc[6]["GroupContribution(K)"] * f3

print(gf1, gf2, gf3)


1063.8396 478.9062 499.1618

In [10]:
id_grupos = np.array([1,4,6])
id_grupos


Out[10]:
array([1, 4, 6])

In [11]:
frecuencia_grupos =  np.array([6,2,2])
frecuencia_grupos


Out[11]:
array([6, 2, 2])

In [12]:
numero_grupos = np.sum(frecuencia_grupos)
numero_grupos


Out[12]:
10

In [13]:
contribucion_grupal_primaria = np.array([GRUPOS_FUNCIONALES_EBULLICION.loc[x]["GroupContribution(K)"] * y for x,y in zip(id_grupos,frecuencia_grupos)])
contribucion_grupal_primaria


Out[13]:
array([ 1063.8396,   478.9062,   499.1618])

In [14]:
GRUPOS_FUNCIONALES_EBULLICION_SECUNDARIOS = pd.read_csv("tablas_gfs/punto_ebullicion_segundo_gfs.csv", sep=" ", index_col="GroupNumber")
GRUPOS_FUNCIONALES_EBULLICION_SECUNDARIOS


Out[14]:
GroupContribution(K) MeanAbsoluteError(%) MeanAbsoluteError(K) StandardDeviation(K) NumberofComponents
GroupNumber
118 40.4205 1.20 6.04 8.22 135
119 -82.2328 2.96 12.38 13.88 19
120 -247.8893 0.16 0.43 0.43 2
121 -20.3996 2.35 8.33 10.70 139
122 15.4720 2.25 8.41 10.87 69
123 -172.4201 2.00 6.85 9.07 99
124 -99.8035 2.03 6.77 9.49 37
125 -62.3740 1.84 6.54 8.92 52
126 -40.0058 1.52 6.42 8.61 180
127 -27.2705 1.32 6.63 8.90 81
128 -3.5075 1.51 7.24 9.68 84
129 16.1061 1.38 6.82 8.84 101
130 25.8348 1.43 6.57 8.30 27
131 35.8330 1.20 5.37 7.08 88
132 51.9098 0.99 4.42 6.11 44
133 111.8372 0.92 4.29 6.58 1

In [15]:
frecuencia_grupos_secundarios = np.array([1])
frecuencia_grupos_secundarios


Out[15]:
array([1])

In [16]:
id_grupos_secundarios = np.array([133])
id_grupos_secundarios


Out[16]:
array([133])

In [17]:
contribucion_grupal_secundaria = np.array([GRUPOS_FUNCIONALES_EBULLICION_SECUNDARIOS.loc[x]["GroupContribution(K)"] * y for x,y in zip(id_grupos_secundarios,frecuencia_grupos_secundarios)])
contribucion_grupal_secundaria


Out[17]:
array([ 111.8372])

In [18]:
#contribucion_grupal_secundaria = GRUPOS_FUNCIONALES_EBULLICION_SECUNDARIOS.loc[133]["GroupContribution(K)"] * 1
#contribucion_grupal_secundaria

In [19]:
contribucion_grupal_total = np.sum(contribucion_grupal_primaria) + np.sum(contribucion_grupal_secundaria)
contribucion_grupal_total


Out[19]:
2153.7448000000004

In [20]:
print(a, b, c)


0.6583 1.6868 84.3395

In [21]:
Tb = contribucion_grupal_total / (numero_grupos ** a + b) + c
Tb


Out[21]:
429.50061053039957

In [ ]:

$$ T_b = \frac{\sum_{i}^{m}{N_iC_i}}{n^a + b} + c $$
$$ GI = \frac{1}{n} \sum_{i}^m{\sum_{j}^n { \frac{C_{i-j}} {m-1} } } $$

donde $$C_{i-j} = C_{j-i} $$


In [ ]:


In [ ]:


In [22]:
GRUPOS_FUNCIONALES_EBULLICION_INTERACCIONES = pd.read_csv("tablas_gfs/punto_ebullicion_interacciones_gfs.csv", sep=" ", index_col="GroupNumber")
#GRUPOS_FUNCIONALES_EBULLICION_INTERACCIONES[["GroupContribution(K)", "MeanAbsoluteError(%)", "MeanAbsoluteError(K)", "StandardDeviation(K)", "NumberofComponents"]] = GRUPOS_FUNCIONALES_EBULLICION_INTERACCIONES[["GroupContribution(K)", "MeanAbsoluteError(%)", "MeanAbsoluteError(K)", "StandardDeviation(K)", "NumberofComponents"]].astype(float)
GRUPOS_FUNCIONALES_EBULLICION_INTERACCIONES


Out[22]:
InteractingGroups GroupContribution(K) MeanAbsoluteError(%) MeanAbsoluteError(K) StandardDeviation(K) NumberofComponents
GroupNumber
135 A-A 291.7985 1.89 9.76 12.57 37.0
136 A-M 314.6126 1.24 5.73 7.42 8.0
137 A-N 286.9698 1.20 6.06 6.77 6.0
138 A-L 38.6974 0.00 0.00 0.00 1.0
139 A-C 146.7286 0.96 4.63 4.64 2.0
140 A-D 135.3991 1.79 8.59 10.30 52.0
141 A-E 226.4980 0.00 0.00 0.00 1.0
142 A-F 211.6814 2.49 11.46 13.19 18.0
143 A-G 46.3754 1.67 7.82 8.66 8.0
144 A-J -74.0193 0.38 1.99 2.26 4.0
145 A-P 306.3979 1.31 5.87 6.36 3.0
146 A-I 435.0923 0.00 0.00 0.00 1.0
147 A-S 1334.6747 0.00 0.00 0.00 1.0
148 B-B 288.6155 1.04 5.50 6.01 4.0
149 B-M 797.4327 0.00 0.00 0.00 1.0
150 B-C -1477.9671 0.00 0.00 0.00 1.0
151 B-D 130.3742 2.60 13.44 15.25 10.0
152 B-F -1184.9784 0.00 0.00 0.00 1.0
153 B-G NaN NaN NaN NaN NaN
154 B-H 43.9722 0.00 0.00 0.00 1.0
155 B-Q -1048.1236 1.07 5.34 5.69 3.0
156 B-S -614.3624 2.44 13.09 14.36 3.0
157 M-M 174.0258 0.95 4.21 5.10 15.0
158 M-N 510.3473 0.98 5.04 5.44 4.0
159 M-D 124.3549 1.18 5.87 7.15 10.0
160 M-F 182.6291 1.79 9.89 10.54 3.0
161 M-J -562.3061 0.78 4.00 4.00 2.0
162 M-Q 663.8009 1.60 9.10 9.10 2.0
163 M-I 395.4093 0.00 0.00 0.00 1.0
164 M-S 27.2735 1.71 8.36 8.36 2.0
... ... ... ... ... ... ...
183 D-J 394.5505 1.57 7.68 7.77 4.0
184 D-Q 963.6518 0.68 3.74 3.74 2.0
185 D-P 293.5974 0.56 2.66 3.00 3.0
186 D-I 329.0050 0.33 1.29 1.29 2.0
187 E-E 1006.3880 0.00 0.00 0.00 1.0
188 E-H 163.5475 0.00 0.00 0.00 1.0
189 F-F 431.0990 2.04 10.25 12.78 70.0
190 F-G 22.5208 2.41 11.49 13.86 25.0
191 F-Q -205.6165 0.00 0.00 0.00 1.0
192 F-P 517.0677 2.66 13.29 13.85 6.0
193 F-I 707.9404 0.96 4.39 5.29 4.0
194 G-G -303.9653 2.47 12.03 14.06 10.0
195 G-H -391.3690 0.00 0.00 0.00 1.0
196 G-Q -3628.9026 NaN NaN NaN NaN
197 G-K 381.0107 0.45 2.29 2.45 3.0
198 G-P -574.2230 0.00 0.00 0.00 1.0
199 G-I 176.5481 0.31 1.51 1.74 3.0
200 G-S 124.1943 0.85 4.28 4.67 3.0
201 H-H 582.1763 0.00 0.00 0.00 1.0
202 H-Q 140.9644 0.08 0.46 0.46 2.0
203 H-K 397.5750 0.00 0.00 0.00 1.0
204 H-I 674.6858 0.00 0.00 0.00 1.0
205 J-J -11.9406 1.65 7.86 9.42 7.0
206 Q-Q 65.1432 0.91 5.43 5.95 3.0
207 K-P -101.2319 0.00 0.00 0.00 1.0
208 K-R -348.7400 2.09 9.21 10.14 10.0
209 P-S -370.9729 0.00 0.00 0.00 1.0
210 I-R -888.6123 0.00 0.00 0.00 1.0
211 R-R NaN NaN NaN NaN NaN
212 S-S -271.9449 1.84 7.47 8.25 3.0

78 rows × 6 columns


In [23]:
def coerce_df_columns_to_numeric(df, column_list):
    df[column_list] = df[column_list].apply(pd.to_numeric, errors='coerce')

lista_Columnas = ["GroupContribution(K)", "MeanAbsoluteError(%)", "MeanAbsoluteError(K)", "StandardDeviation(K)", "NumberofComponents"]
coerce_df_columns_to_numeric(GRUPOS_FUNCIONALES_EBULLICION_INTERACCIONES, lista_Columnas)

In [ ]:


In [ ]:


In [24]:
Ni = np.ones(3)
Ci = np.ones(3)
n = 2
M = 45
GI = 9

#def temperatura_Ebullicion_funcional(CONSTANTES_PARAMETROS_EBULLICION, Ni, Ci, n):
def temperatura_Ebullicion_funcional(CONSTANTES_PARAMETROS_EBULLICION, contribucion_grupal_total, numero_grupos):

    a, b, c = CONSTANTES_PARAMETROS_EBULLICION["Tb"]
    #Tb = np.sum(Ni * Ci) / (n ** a + b) + c
    Tb = contribucion_grupal_total / (numero_grupos ** a + b) + c   
    
    return Tb

Tb = temperatura_Ebullicion_funcional(CONSTANTES_PARAMETROS_EBULLICION, contribucion_grupal_total, numero_grupos)
Tb


Out[24]:
429.50061053039957

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [25]:
291.799 * (1/9)


Out[25]:
32.42211111111111

In [26]:
286.970 * (2/9)


Out[26]:
63.77111111111111

In [27]:
numero_grupos2 = 9
numero_interacciones = np.array([1,2])

frecuencia_grupos_interaccion = numero_interacciones / numero_grupos2
#np.array([1/numero_atoms,2/numero_atoms])
frecuencia_grupos_interaccion


Out[27]:
array([ 0.11111111,  0.22222222])

In [28]:
id_grupos_interacciones = np.array([135,137])
id_grupos_interacciones


Out[28]:
array([135, 137])

In [29]:
contribucion_grupal_interaccion = np.array([GRUPOS_FUNCIONALES_EBULLICION_INTERACCIONES.loc[x]["GroupContribution(K)"] * y for x,y in zip(id_grupos_interacciones,frecuencia_grupos_interaccion)])
contribucion_grupal_interaccion


Out[29]:
array([ 32.42205556,  63.77106667])

In [ ]:


In [30]:
contribucion_grupal_interaccion * 2


Out[30]:
array([  64.84411111,  127.54213333])

In [ ]:


In [ ]:


In [ ]:


In [31]:
#contribucion_grupal_total, numero_grupos, Tb = 0.2779983, 10, 245.9

def temperatura_critica_funcional(CONSTANTES_PARAMETROS_CRITICOS, contribucion_grupal_total, numero_grupos, Tb):
    
    a1, b1, c1 = CONSTANTES_PARAMETROS_CRITICOS["Tc"]
        
    # Temperatura crítica
    #Tc = Tb * (b1 + 1 / (a1 + (np.sum(Ni * Ci) + GI) ** c1))
    Tc = Tb * (b1 + 1 / (a1 + (contribucion_grupal_total) ** c1))
    
    return Tc

Tc = temperatura_critica_funcional(CONSTANTES_PARAMETROS_CRITICOS, contribucion_grupal_total, numero_grupos, Tb)
print("Tc = {} K".format(Tc))


Tc = 300.8010270068788 K

In [32]:
# perflouro-2-propanone, number of atoms: 10

id_grupos = np.array([7,21,51])
frecuencia_grupos =  np.array([2,6,1])
numero_grupos = 10

contribucion_grupal_primaria = np.array([GRUPOS_FUNCIONALES_EBULLICION.loc[x]["GroupContribution(K)"] * y for x,y in zip(id_grupos,frecuencia_grupos)])
print("contribucion_grupal_primaria = ", contribucion_grupal_primaria)

id_grupos_secundarios = np.array([120,121,123])
frecuencia_grupos_secundarios = np.array([1,2,1])

contribucion_grupal_secundaria = np.array([GRUPOS_FUNCIONALES_EBULLICION_SECUNDARIOS.loc[x]["GroupContribution(K)"] * y for x,y in zip(id_grupos_secundarios,frecuencia_grupos_secundarios)])
print("contribucion_grupal_secundaria = ", contribucion_grupal_secundaria)

contribucion_grupal_total = np.sum(contribucion_grupal_primaria) + np.sum(contribucion_grupal_secundaria)
print("contribucion_grupal_total = ", contribucion_grupal_total)

Tb = temperatura_Ebullicion_funcional(CONSTANTES_PARAMETROS_EBULLICION, contribucion_grupal_total, numero_grupos)
print("Tb = {} K".format(Tb))

numero_interacciones = np.array([1,2])

id_grupos_interacciones = np.array([135,137])
frecuencia_grupos_interaccion = numero_interacciones / numero_grupos
#print(frecuencia_grupos_interaccion)

contribucion_grupal_interaccion = np.array([GRUPOS_FUNCIONALES_EBULLICION_INTERACCIONES.loc[x]["GroupContribution(K)"] * y for x,y in zip(id_grupos_interacciones,frecuencia_grupos_interaccion)])
contribucion_grupal_interaccion

#contribucion_grupal_total, numero_grupos, Tb = 0.2779983, 10, 245.9

contribucion_grupal_total = 0.2779983

Tc = temperatura_critica_funcional(CONSTANTES_PARAMETROS_CRITICOS, contribucion_grupal_total, numero_grupos, Tb)
print("Tc = {} K".format(Tc))


contribucion_grupal_primaria =  [ 533.7538  319.1226  618.9782]
contribucion_grupal_secundaria =  [-247.8893  -40.7992 -172.4201]
contribucion_grupal_total =  1010.746
Tb = 246.32257795062776 K
Tc = 358.6226780080833 K

In [ ]:


In [33]:
from rdkit import Chem
from rdkit.Chem import Draw
from pubchempy import get_cids, get_compounds
import matplotlib.pyplot as plt
%matplotlib inline

from rdkit.Chem.Draw import IPythonConsole

In [ ]:


In [34]:
#datosAll.csv

datos = pd.read_csv("datosAll.csv", index_col="name")
datos


Out[34]:
ac b rm del1
name
METHANE 2.528951 0.027157 0.392340 2.414214
ETHANE 6.128134 0.041073 0.525423 2.414214
PROPANE 10.312189 0.057060 0.603265 2.414214
n-BUTANE 15.248188 0.073399 0.672582 2.414214
n-PENTANE 20.967239 0.091349 0.745445 2.414214
n-HEXANE 27.280355 0.109979 0.814819 2.414214
n-HEPTANE 34.109839 0.129214 0.880689 2.414214
n-OCTANE 41.600631 0.149692 0.947826 2.414214
n-NONANE 49.446035 0.170173 1.005541 2.414214
n-DECANE 57.916241 0.191869 1.068477 2.414214
n-UNDECANE 67.064566 0.214771 1.116594 2.414214
n-DODECANE 76.191481 0.236954 1.173921 2.414214
n-TRIDECANE 86.862503 0.263337 1.223942 2.414214
n-TETRADECANE 97.967992 0.289290 1.254715 2.414214
n-PENTADECANE 108.478717 0.313541 1.305959 2.414214
n-HEXADECANE 119.583747 0.338467 1.342140 2.414214
n-HEPTADECANE 129.470036 0.359977 1.401807 2.414214
n-OCTADECANE 140.721622 0.385499 1.448323 2.414214
n-NONADECANE 152.079496 0.410567 1.492926 2.414214
n-EICOSANE 162.855391 0.433934 1.551315 2.414214
n-HENEICOSANE 174.644990 0.459367 1.587932 2.414214
n-DOCOSANE 187.148169 0.486624 1.619718 2.414214
n-TRICOSANE 198.946080 0.511453 1.673058 2.414214
n-TETRACOSANE 211.254092 0.537690 1.716791 2.414214
n-PENTACOSANE 222.281736 0.560184 1.749542 2.414214
n-HEXACOSANE 236.076320 0.589864 1.795319 2.414214
n-OCTACOSANE 260.822935 0.641513 1.869830 2.414214
n-TRIACONTANE 285.195112 0.691485 1.922236 2.414214
n-DOTRIACONTANE 312.170937 0.747153 1.986129 2.414214
n-HEXATRIACONTANE 359.786568 0.842396 2.099573 2.414214
... ... ... ... ...
SULFUR 30.324294 0.047262 0.738124 2.414214
SILICON 142.383086 0.059633 1.705765 2.414214
VANADIUM 39.826793 0.007196 -0.012387 2.414214
XENON 4.603650 0.032514 0.374640 2.414214
ZINC 11.082762 0.007154 0.493294 2.414214
DIMETHYLDICHLOROSILANE 24.847738 0.097718 0.767880 2.414214
DIMETHYLCHLOROSILANE 19.710460 0.085455 0.746992 2.414214
TRIMETHYLCHLOROSILANE 24.796605 0.101945 0.771513 2.414214
TETRAMETHYLSILANE 23.088671 0.104902 0.706563 2.414214
HEXAMETHYLDISILOXANE 45.020453 0.177614 0.971616 2.414214
HEXAMETHYLCYCLOTRISILOXANE 59.149952 0.218409 1.045284 2.414214
HEXAMETHYLDISILAZANE 49.365191 0.185697 1.091113 2.414214
OCTAMETHYLCYCLOTETRASILOXANE 82.708801 0.288580 1.189390 2.414214
DECAMETHYLCYCLOPENTASILOXANE 105.845270 0.349831 1.281824 2.414214
DODECAMETHYLCYCLOHEXASILOXANE 138.999698 0.440452 1.375179 2.414214
DICHLOROSILANE 14.700648 0.065540 0.523934 2.414214
TRICHLOROSILANE 17.622103 0.075284 0.676739 2.414214
TETRACHLOROSILANE 22.931994 0.092559 0.717633 2.414214
TETRAFLUOROSILANE 5.775335 0.045631 0.929469 2.414214
SILANE 4.809981 0.036496 0.520955 2.414214
DISILANE 11.651383 0.055192 0.528696 2.414214
TRIMETHYLALUMINUM 30.778578 0.101587 0.697883 2.414214
TRIMETHYLGALLIUM 20.619667 0.082736 0.683323 2.414214
CHLOROSULFONIC ACID 18.463140 0.053975 0.814405 2.414214
PERCHLORIC ACID 33.036959 0.107141 0.450775 2.414214
NITRIC ACID 12.569184 0.049464 1.338672 2.414214
WATER 6.081375 0.019231 0.874457 2.414214
HYDROGEN PEROXIDE 7.868484 0.022053 0.892445 2.414214
MAGNESIUM OXIDE 3343.393845 1.149883 0.374640 2.414214
PHOSPHORUS PENTOXIDE 23.008632 0.036471 1.195016 2.414214

1150 rows × 4 columns


In [35]:
properties_data = pt.Data_parse()

name = properties_data.read_dppr()
name


Out[35]:
Omega Tc Pc Vc Zc Tm Tb Ttr Ptr Vliq SolPar
Name
METHANE 0.0115 190.564 45.389 0.0986 0.2860 90.694 111.660 90.694 1.154310e-01 0.037969 11.6000
ETHANE 0.0995 305.320 48.083 0.1455 0.2790 90.352 184.550 90.352 1.115220e-05 0.055229 12.4000
PROPANE 0.1523 369.830 41.924 0.2000 0.2760 85.470 231.110 85.470 1.662970e-09 0.075700 13.1000
n-BUTANE 0.2002 425.120 37.464 0.2550 0.2740 134.860 272.650 134.860 6.647720e-06 0.096483 13.7000
n-PENTANE 0.2515 469.700 33.259 0.3130 0.2700 143.420 309.220 143.420 6.774420e-07 0.116045 14.4000
n-HEXANE 0.3013 507.600 29.854 0.3710 0.2660 177.830 341.880 177.830 8.899040e-06 0.131362 14.9000
n-HEPTANE 0.3495 540.200 27.042 0.4280 0.2610 182.570 371.580 182.570 1.803050e-06 0.147024 15.2000
n-OCTANE 0.3996 568.700 24.574 0.4860 0.2560 216.380 398.830 216.380 2.080730e-05 0.163374 15.4000
n-NONANE 0.4435 594.600 22.601 0.5440 0.2520 219.660 423.970 219.660 4.249520e-06 0.179559 15.6000
n-DECANE 0.4923 617.700 20.824 0.6000 0.2470 243.510 447.305 243.510 1.374750e-05 0.195827 15.7000
n-UNDECANE 0.5303 639.000 19.245 0.6590 0.2420 247.571 469.078 247.571 4.030730e-06 0.212243 15.9000
n-DODECANE 0.5764 658.000 17.962 0.7160 0.2380 263.568 489.473 263.568 6.071580e-06 0.228605 15.9000
n-TRIDECANE 0.6174 675.000 16.580 0.7750 0.2320 267.760 508.616 267.760 2.476770e-06 0.244631 16.1000
n-TETRADECANE 0.6430 693.000 15.495 0.8300 0.2260 279.010 526.727 279.010 2.493810e-06 0.261271 16.1000
n-PENTADECANE 0.6863 708.000 14.606 0.8890 0.2240 283.072 543.835 283.072 1.271870e-06 0.277783 16.2000
n-HEXADECANE 0.7174 723.000 13.817 0.9440 0.2200 291.308 560.014 291.308 9.103690e-07 0.294213 16.2000
n-HEPTADECANE 0.7697 736.000 13.225 1.0000 0.2190 295.134 575.300 295.134 4.594710e-07 0.310939 16.1000
n-OCTADECANE 0.8114 747.000 12.534 1.0600 0.2170 301.310 589.860 301.310 3.346570e-07 0.328233 16.1000
n-NONADECANE 0.8522 758.000 11.942 1.1200 0.2150 305.040 603.050 305.040 1.570090e-07 0.345621 16.2000
n-EICOSANE 0.9069 768.000 11.448 1.1700 0.2130 309.580 616.930 309.580 9.136310e-08 0.363690 16.2000
n-HENEICOSANE 0.9420 778.000 10.955 1.2300 0.2110 313.350 629.650 313.350 6.134040e-08 0.381214 16.2000
n-DOCOSANE 0.9730 787.000 10.461 1.2900 0.2090 317.150 641.750 317.150 3.548730e-08 0.399078 16.2000
n-TRICOSANE 1.0262 796.000 10.067 1.3500 0.2080 320.650 653.350 320.650 1.844110e-08 0.416872 16.2000
n-TETRACOSANE 1.0710 804.000 9.672 1.4100 0.2070 323.750 664.450 323.750 1.366960e-08 0.434942 16.3000
n-PENTACOSANE 1.1053 812.000 9.376 1.4600 0.2050 326.650 675.050 326.650 7.883150e-09 0.452649 16.2000
n-HEXACOSANE 1.1544 819.000 8.981 1.5200 0.2030 329.250 685.350 329.250 5.090710e-09 0.469975 16.3000
n-OCTACOSANE 1.2375 832.000 8.389 1.6300 0.2000 334.350 704.750 334.350 1.030910e-09 0.506321 16.3000
n-TRIACONTANE 1.2986 844.000 7.895 1.7500 0.2000 338.650 722.850 338.650 4.146430e-10 0.540500 16.2000
n-DOTRIACONTANE 1.3765 855.000 7.402 1.8600 0.1960 342.350 738.850 342.350 6.872220e-11 0.576606 16.2000
n-HEXATRIACONTANE 1.5260 874.000 6.711 2.0900 0.1960 349.050 770.150 349.050 2.859590e-12 0.648426 16.1000
... ... ... ... ... ... ... ... ... ... ... ...
SULFUR 0.2463 1313.000 179.700 0.1580 0.2640 388.360 717.824 388.360 3.054530e-05 0.017870 20.2454
SILICON 1.0596 4886.000 529.978 0.2326 0.3070 1685.000 3151.000 1685.000 4.675110e-07 0.011087 197.8380
VANADIUM -0.2408 11325.000 10179.124 0.0328 0.3590 2190.000 3653.150 2190.000 3.112910e-05 0.000000 0.0000
XENON 0.0000 289.740 57.640 0.1180 0.2860 161.360 165.030 161.360 8.059990e-01 0.044449 15.9089
ZINC 0.0780 3170.000 2866.024 0.0330 0.3636 692.700 1181.150 692.700 2.043470e-04 0.009979 109.4470
DIMETHYLDICHLOROSILANE 0.2675 520.350 34.444 0.3580 0.2890 197.050 343.350 197.050 1.323370e-04 0.121206 15.6323
DIMETHYLCHLOROSILANE 0.2526 472.000 35.727 0.2990 0.2760 162.150 308.650 162.150 4.154710e-05 0.109917 14.3865
TRIMETHYLCHLOROSILANE 0.2701 497.750 31.582 0.3660 0.2830 215.450 330.750 215.450 2.014680e-03 0.127296 14.6548
TETRAMETHYLSILANE 0.2240 450.400 27.772 0.3570 0.2680 174.070 299.800 174.070 2.608800e-04 0.137700 12.6060
HEXAMETHYLDISILOXANE 0.4176 518.700 18.890 0.6010 0.2670 204.930 373.670 204.930 5.704260e-05 0.213585 12.5781
HEXAMETHYLCYCLOTRISILOXANE 0.4742 554.200 16.413 0.6340 0.2290 337.150 408.260 337.150 8.380000e-02 0.249999 12.4479
HEXAMETHYLDISILAZANE 0.5101 544.000 18.949 0.6130 0.2600 0.000 399.150 0.000 0.000000e+00 0.209042 13.6319
OCTAMETHYLCYCLOTETRASILOXANE 0.5890 586.500 13.146 0.9700 0.2650 290.800 448.150 290.800 7.295520e-04 0.312420 12.9222
DECAMETHYLCYCLOPENTASILOXANE 0.6658 619.150 11.448 1.2160 0.2740 235.150 484.100 235.150 6.955680e-07 0.388615 12.0599
DODECAMETHYLCYCLOHEXASILOXANE 0.7462 645.800 9.484 1.6100 0.2880 270.150 518.150 270.150 2.834620e-06 0.462201 11.6290
DICHLOROSILANE 0.0985 459.000 45.300 0.2370 0.2850 151.150 281.450 151.150 4.528600e-05 0.081957 16.6804
TRICHLOROSILANE 0.2031 479.000 41.155 0.2680 0.2810 144.950 305.000 144.950 2.832050e-06 0.101489 15.4886
TETRACHLOROSILANE 0.2318 507.000 35.431 0.3260 0.2780 204.300 330.000 204.300 7.816670e-04 0.115581 15.3423
TETRAFLUOROSILANE 0.3858 259.000 36.714 0.2020 0.3490 186.350 178.000 186.350 2.178400e+00 0.063961 14.4327
SILANE 0.0965 269.700 47.800 0.1327 0.2870 88.150 161.000 88.480 1.581380e-04 0.055126 14.2013
DISILANE 0.1017 432.000 50.629 0.1980 0.2830 140.650 259.000 143.850 2.318210e-04 0.074015 16.0554
TRIMETHYLALUMINUM 0.2179 620.000 39.477 0.2710 0.2100 288.430 400.270 288.430 8.795490e-03 0.096325 20.4074
TRIMETHYLGALLIUM 0.2077 510.000 39.872 0.2110 0.2010 257.450 328.950 257.450 3.297440e-02 0.100788 17.3704
CHLOROSULFONIC ACID 0.3010 700.000 83.888 0.1950 0.2850 193.150 427.000 193.150 5.090520e-08 0.000000 26.1158
PERCHLORIC ACID 0.0498 631.000 38.095 0.1680 0.1240 171.950 385.000 171.950 1.274040e-06 0.000000 22.2548
NITRIC ACID 0.7144 520.000 68.000 0.1450 0.2310 231.550 356.150 231.550 5.997350e-04 2.170300 29.6056
WATER 0.3449 647.130 217.666 0.0559 0.2290 273.150 373.150 273.160 6.037300e-03 0.018069 47.8127
HYDROGEN PEROXIDE 0.3582 730.150 214.162 0.0777 0.2780 272.725 423.350 272.740 3.424620e-04 2.260200 45.8343
MAGNESIUM OXIDE 0.0000 5950.000 33.470 0.2095 0.0144 3105.000 3873.200 3105.000 0.000000e+00 0.000000 162.4650
PHOSPHORUS PENTOXIDE 0.5936 1291.000 228.966 0.0000 0.0000 561.150 787.150 561.150 4.100290e-03 0.000000 0.0000

1150 rows × 11 columns


In [36]:
name.loc["NITROGEN TRIFLUORIDE"]


Out[36]:
Omega       0.125500
Tc        233.850000
Pc         44.707000
Vc          0.118700
Zc          0.277000
Tm         66.360000
Tb        144.090000
Ttr        66.360000
Ptr         0.000003
Vliq        0.235000
SolPar     14.996000
Name: NITROGEN TRIFLUORIDE, dtype: float64

In [ ]:


In [37]:
parametrosCompletosPR = pd.read_excel("tabla_parametros_completa_PR.xlsx")
parametrosCompletosPR


Out[37]:
Omega Tc Pc Vc Zc Tm Tb Ttr Ptr Vliq SolPar ac b rm del1
METHANE 0.0115 190.564 45.389 0.0986 0.2860 90.694 111.660 90.694 1.154310e-01 0.037969 11.6000 2.528951 0.027157 0.392340 2.414214
ETHANE 0.0995 305.320 48.083 0.1455 0.2790 90.352 184.550 90.352 1.115220e-05 0.055229 12.4000 6.128134 0.041073 0.525423 2.414214
PROPANE 0.1523 369.830 41.924 0.2000 0.2760 85.470 231.110 85.470 1.662970e-09 0.075700 13.1000 10.312189 0.057060 0.603265 2.414214
n-BUTANE 0.2002 425.120 37.464 0.2550 0.2740 134.860 272.650 134.860 6.647720e-06 0.096483 13.7000 15.248188 0.073399 0.672582 2.414214
n-PENTANE 0.2515 469.700 33.259 0.3130 0.2700 143.420 309.220 143.420 6.774420e-07 0.116045 14.4000 20.967239 0.091349 0.745445 2.414214
n-HEXANE 0.3013 507.600 29.854 0.3710 0.2660 177.830 341.880 177.830 8.899040e-06 0.131362 14.9000 27.280355 0.109979 0.814819 2.414214
n-HEPTANE 0.3495 540.200 27.042 0.4280 0.2610 182.570 371.580 182.570 1.803050e-06 0.147024 15.2000 34.109839 0.129214 0.880689 2.414214
n-OCTANE 0.3996 568.700 24.574 0.4860 0.2560 216.380 398.830 216.380 2.080730e-05 0.163374 15.4000 41.600631 0.149692 0.947826 2.414214
n-NONANE 0.4435 594.600 22.601 0.5440 0.2520 219.660 423.970 219.660 4.249520e-06 0.179559 15.6000 49.446035 0.170173 1.005541 2.414214
n-DECANE 0.4923 617.700 20.824 0.6000 0.2470 243.510 447.305 243.510 1.374750e-05 0.195827 15.7000 57.916241 0.191869 1.068477 2.414214
n-UNDECANE 0.5303 639.000 19.245 0.6590 0.2420 247.571 469.078 247.571 4.030730e-06 0.212243 15.9000 67.064566 0.214771 1.116594 2.414214
n-DODECANE 0.5764 658.000 17.962 0.7160 0.2380 263.568 489.473 263.568 6.071580e-06 0.228605 15.9000 76.191481 0.236954 1.173921 2.414214
n-TRIDECANE 0.6174 675.000 16.580 0.7750 0.2320 267.760 508.616 267.760 2.476770e-06 0.244631 16.1000 86.862503 0.263337 1.223942 2.414214
n-TETRADECANE 0.6430 693.000 15.495 0.8300 0.2260 279.010 526.727 279.010 2.493810e-06 0.261271 16.1000 97.967992 0.289290 1.254715 2.414214
n-PENTADECANE 0.6863 708.000 14.606 0.8890 0.2240 283.072 543.835 283.072 1.271870e-06 0.277783 16.2000 108.478717 0.313541 1.305959 2.414214
n-HEXADECANE 0.7174 723.000 13.817 0.9440 0.2200 291.308 560.014 291.308 9.103690e-07 0.294213 16.2000 119.583747 0.338467 1.342140 2.414214
n-HEPTADECANE 0.7697 736.000 13.225 1.0000 0.2190 295.134 575.300 295.134 4.594710e-07 0.310939 16.1000 129.470036 0.359977 1.401807 2.414214
n-OCTADECANE 0.8114 747.000 12.534 1.0600 0.2170 301.310 589.860 301.310 3.346570e-07 0.328233 16.1000 140.721622 0.385499 1.448323 2.414214
n-NONADECANE 0.8522 758.000 11.942 1.1200 0.2150 305.040 603.050 305.040 1.570090e-07 0.345621 16.2000 152.079496 0.410567 1.492926 2.414214
n-EICOSANE 0.9069 768.000 11.448 1.1700 0.2130 309.580 616.930 309.580 9.136310e-08 0.363690 16.2000 162.855391 0.433934 1.551315 2.414214
n-HENEICOSANE 0.9420 778.000 10.955 1.2300 0.2110 313.350 629.650 313.350 6.134040e-08 0.381214 16.2000 174.644990 0.459367 1.587932 2.414214
n-DOCOSANE 0.9730 787.000 10.461 1.2900 0.2090 317.150 641.750 317.150 3.548730e-08 0.399078 16.2000 187.148169 0.486624 1.619718 2.414214
n-TRICOSANE 1.0262 796.000 10.067 1.3500 0.2080 320.650 653.350 320.650 1.844110e-08 0.416872 16.2000 198.946080 0.511453 1.673058 2.414214
n-TETRACOSANE 1.0710 804.000 9.672 1.4100 0.2070 323.750 664.450 323.750 1.366960e-08 0.434942 16.3000 211.254092 0.537690 1.716791 2.414214
n-PENTACOSANE 1.1053 812.000 9.376 1.4600 0.2050 326.650 675.050 326.650 7.883150e-09 0.452649 16.2000 222.281736 0.560184 1.749542 2.414214
n-HEXACOSANE 1.1544 819.000 8.981 1.5200 0.2030 329.250 685.350 329.250 5.090710e-09 0.469975 16.3000 236.076320 0.589864 1.795319 2.414214
n-OCTACOSANE 1.2375 832.000 8.389 1.6300 0.2000 334.350 704.750 334.350 1.030910e-09 0.506321 16.3000 260.822935 0.641513 1.869830 2.414214
n-TRIACONTANE 1.2986 844.000 7.895 1.7500 0.2000 338.650 722.850 338.650 4.146430e-10 0.540500 16.2000 285.195112 0.691485 1.922236 2.414214
n-DOTRIACONTANE 1.3765 855.000 7.402 1.8600 0.1960 342.350 738.850 342.350 6.872220e-11 0.576606 16.2000 312.170937 0.747153 1.986129 2.414214
n-HEXATRIACONTANE 1.5260 874.000 6.711 2.0900 0.1960 349.050 770.150 349.050 2.859590e-12 0.648426 16.1000 359.786568 0.842396 2.099573 2.414214
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
SULFUR 0.2463 1313.000 179.700 0.1580 0.2640 388.360 717.824 388.360 3.054530e-05 0.017870 20.2454 30.324294 0.047262 0.738124 2.414214
SILICON 1.0596 4886.000 529.978 0.2326 0.3070 1685.000 3151.000 1685.000 4.675110e-07 0.011087 197.8380 142.383086 0.059633 1.705765 2.414214
VANADIUM -0.2408 11325.000 10179.124 0.0328 0.3590 2190.000 3653.150 2190.000 3.112910e-05 0.000000 0.0000 39.826793 0.007196 -0.012387 2.414214
XENON 0.0000 289.740 57.640 0.1180 0.2860 161.360 165.030 161.360 8.059990e-01 0.044449 15.9089 4.603650 0.032514 0.374640 2.414214
ZINC 0.0780 3170.000 2866.024 0.0330 0.3636 692.700 1181.150 692.700 2.043470e-04 0.009979 109.4470 11.082762 0.007154 0.493294 2.414214
DIMETHYLDICHLOROSILANE 0.2675 520.350 34.444 0.3580 0.2890 197.050 343.350 197.050 1.323370e-04 0.121206 15.6323 24.847738 0.097718 0.767880 2.414214
DIMETHYLCHLOROSILANE 0.2526 472.000 35.727 0.2990 0.2760 162.150 308.650 162.150 4.154710e-05 0.109917 14.3865 19.710460 0.085455 0.746992 2.414214
TRIMETHYLCHLOROSILANE 0.2701 497.750 31.582 0.3660 0.2830 215.450 330.750 215.450 2.014680e-03 0.127296 14.6548 24.796605 0.101945 0.771513 2.414214
TETRAMETHYLSILANE 0.2240 450.400 27.772 0.3570 0.2680 174.070 299.800 174.070 2.608800e-04 0.137700 12.6060 23.088671 0.104902 0.706563 2.414214
HEXAMETHYLDISILOXANE 0.4176 518.700 18.890 0.6010 0.2670 204.930 373.670 204.930 5.704260e-05 0.213585 12.5781 45.020453 0.177614 0.971616 2.414214
HEXAMETHYLCYCLOTRISILOXANE 0.4742 554.200 16.413 0.6340 0.2290 337.150 408.260 337.150 8.380000e-02 0.249999 12.4479 59.149952 0.218409 1.045284 2.414214
HEXAMETHYLDISILAZANE 0.5101 544.000 18.949 0.6130 0.2600 0.000 399.150 0.000 0.000000e+00 0.209042 13.6319 49.365191 0.185697 1.091113 2.414214
OCTAMETHYLCYCLOTETRASILOXANE 0.5890 586.500 13.146 0.9700 0.2650 290.800 448.150 290.800 7.295520e-04 0.312420 12.9222 82.708801 0.288580 1.189390 2.414214
DECAMETHYLCYCLOPENTASILOXANE 0.6658 619.150 11.448 1.2160 0.2740 235.150 484.100 235.150 6.955680e-07 0.388615 12.0599 105.845270 0.349831 1.281824 2.414214
DODECAMETHYLCYCLOHEXASILOXANE 0.7462 645.800 9.484 1.6100 0.2880 270.150 518.150 270.150 2.834620e-06 0.462201 11.6290 138.999698 0.440452 1.375179 2.414214
DICHLOROSILANE 0.0985 459.000 45.300 0.2370 0.2850 151.150 281.450 151.150 4.528600e-05 0.081957 16.6804 14.700648 0.065540 0.523934 2.414214
TRICHLOROSILANE 0.2031 479.000 41.155 0.2680 0.2810 144.950 305.000 144.950 2.832050e-06 0.101489 15.4886 17.622103 0.075284 0.676739 2.414214
TETRACHLOROSILANE 0.2318 507.000 35.431 0.3260 0.2780 204.300 330.000 204.300 7.816670e-04 0.115581 15.3423 22.931994 0.092559 0.717633 2.414214
TETRAFLUOROSILANE 0.3858 259.000 36.714 0.2020 0.3490 186.350 178.000 186.350 2.178400e+00 0.063961 14.4327 5.775335 0.045631 0.929469 2.414214
SILANE 0.0965 269.700 47.800 0.1327 0.2870 88.150 161.000 88.480 1.581380e-04 0.055126 14.2013 4.809981 0.036496 0.520955 2.414214
DISILANE 0.1017 432.000 50.629 0.1980 0.2830 140.650 259.000 143.850 2.318210e-04 0.074015 16.0554 11.651383 0.055192 0.528696 2.414214
TRIMETHYLALUMINUM 0.2179 620.000 39.477 0.2710 0.2100 288.430 400.270 288.430 8.795490e-03 0.096325 20.4074 30.778578 0.101587 0.697883 2.414214
TRIMETHYLGALLIUM 0.2077 510.000 39.872 0.2110 0.2010 257.450 328.950 257.450 3.297440e-02 0.100788 17.3704 20.619667 0.082736 0.683323 2.414214
CHLOROSULFONIC ACID 0.3010 700.000 83.888 0.1950 0.2850 193.150 427.000 193.150 5.090520e-08 0.000000 26.1158 18.463140 0.053975 0.814405 2.414214
PERCHLORIC ACID 0.0498 631.000 38.095 0.1680 0.1240 171.950 385.000 171.950 1.274040e-06 0.000000 22.2548 33.036959 0.107141 0.450775 2.414214
NITRIC ACID 0.7144 520.000 68.000 0.1450 0.2310 231.550 356.150 231.550 5.997350e-04 2.170300 29.6056 12.569184 0.049464 1.338672 2.414214
WATER 0.3449 647.130 217.666 0.0559 0.2290 273.150 373.150 273.160 6.037300e-03 0.018069 47.8127 6.081375 0.019231 0.874457 2.414214
HYDROGEN PEROXIDE 0.3582 730.150 214.162 0.0777 0.2780 272.725 423.350 272.740 3.424620e-04 2.260200 45.8343 7.868484 0.022053 0.892445 2.414214
MAGNESIUM OXIDE 0.0000 5950.000 33.470 0.2095 0.0144 3105.000 3873.200 3105.000 0.000000e+00 0.000000 162.4650 3343.393845 1.149883 0.374640 2.414214
PHOSPHORUS PENTOXIDE 0.5936 1291.000 228.966 0.0000 0.0000 561.150 787.150 561.150 4.100290e-03 0.000000 0.0000 23.008632 0.036471 1.195016 2.414214

1150 rows × 15 columns


In [38]:
# No es necesaria porque ya se guardo la tabla: tabla_parametros_completa_PR.csv
# parametrosCompletosPR.to_csv("tabla_parametros_completa_PR.csv", encoding='utf-8', index=True)

In [39]:
parametrosCompletosPRcsv = pd.read_csv("tabla_parametros_completa_PR.csv", index_col="name")
parametrosCompletosPRcsv


Out[39]:
Omega Tc Pc Vc Zc Tm Tb Ttr Ptr Vliq SolPar ac b rm del1
name
METHANE 0.0115 190.564 45.389 0.0986 0.2860 90.694 111.660 90.694 1.154310e-01 0.037969 11.6000 2.528951 0.027157 0.392340 2.414214
ETHANE 0.0995 305.320 48.083 0.1455 0.2790 90.352 184.550 90.352 1.115220e-05 0.055229 12.4000 6.128134 0.041073 0.525423 2.414214
PROPANE 0.1523 369.830 41.924 0.2000 0.2760 85.470 231.110 85.470 1.662970e-09 0.075700 13.1000 10.312189 0.057060 0.603265 2.414214
n-BUTANE 0.2002 425.120 37.464 0.2550 0.2740 134.860 272.650 134.860 6.647720e-06 0.096483 13.7000 15.248188 0.073399 0.672582 2.414214
n-PENTANE 0.2515 469.700 33.259 0.3130 0.2700 143.420 309.220 143.420 6.774420e-07 0.116045 14.4000 20.967239 0.091349 0.745445 2.414214
n-HEXANE 0.3013 507.600 29.854 0.3710 0.2660 177.830 341.880 177.830 8.899040e-06 0.131362 14.9000 27.280355 0.109979 0.814819 2.414214
n-HEPTANE 0.3495 540.200 27.042 0.4280 0.2610 182.570 371.580 182.570 1.803050e-06 0.147024 15.2000 34.109839 0.129214 0.880689 2.414214
n-OCTANE 0.3996 568.700 24.574 0.4860 0.2560 216.380 398.830 216.380 2.080730e-05 0.163374 15.4000 41.600631 0.149692 0.947826 2.414214
n-NONANE 0.4435 594.600 22.601 0.5440 0.2520 219.660 423.970 219.660 4.249520e-06 0.179559 15.6000 49.446035 0.170173 1.005541 2.414214
n-DECANE 0.4923 617.700 20.824 0.6000 0.2470 243.510 447.305 243.510 1.374750e-05 0.195827 15.7000 57.916241 0.191869 1.068477 2.414214
n-UNDECANE 0.5303 639.000 19.245 0.6590 0.2420 247.571 469.078 247.571 4.030730e-06 0.212243 15.9000 67.064566 0.214771 1.116594 2.414214
n-DODECANE 0.5764 658.000 17.962 0.7160 0.2380 263.568 489.473 263.568 6.071580e-06 0.228605 15.9000 76.191481 0.236954 1.173921 2.414214
n-TRIDECANE 0.6174 675.000 16.580 0.7750 0.2320 267.760 508.616 267.760 2.476770e-06 0.244631 16.1000 86.862503 0.263337 1.223942 2.414214
n-TETRADECANE 0.6430 693.000 15.495 0.8300 0.2260 279.010 526.727 279.010 2.493810e-06 0.261271 16.1000 97.967992 0.289290 1.254715 2.414214
n-PENTADECANE 0.6863 708.000 14.606 0.8890 0.2240 283.072 543.835 283.072 1.271870e-06 0.277783 16.2000 108.478717 0.313541 1.305959 2.414214
n-HEXADECANE 0.7174 723.000 13.817 0.9440 0.2200 291.308 560.014 291.308 9.103690e-07 0.294213 16.2000 119.583747 0.338467 1.342140 2.414214
n-HEPTADECANE 0.7697 736.000 13.225 1.0000 0.2190 295.134 575.300 295.134 4.594710e-07 0.310939 16.1000 129.470036 0.359977 1.401807 2.414214
n-OCTADECANE 0.8114 747.000 12.534 1.0600 0.2170 301.310 589.860 301.310 3.346570e-07 0.328233 16.1000 140.721622 0.385499 1.448323 2.414214
n-NONADECANE 0.8522 758.000 11.942 1.1200 0.2150 305.040 603.050 305.040 1.570090e-07 0.345621 16.2000 152.079496 0.410567 1.492926 2.414214
n-EICOSANE 0.9069 768.000 11.448 1.1700 0.2130 309.580 616.930 309.580 9.136310e-08 0.363690 16.2000 162.855391 0.433934 1.551315 2.414214
n-HENEICOSANE 0.9420 778.000 10.955 1.2300 0.2110 313.350 629.650 313.350 6.134040e-08 0.381214 16.2000 174.644990 0.459367 1.587932 2.414214
n-DOCOSANE 0.9730 787.000 10.461 1.2900 0.2090 317.150 641.750 317.150 3.548730e-08 0.399078 16.2000 187.148169 0.486624 1.619718 2.414214
n-TRICOSANE 1.0262 796.000 10.067 1.3500 0.2080 320.650 653.350 320.650 1.844110e-08 0.416872 16.2000 198.946080 0.511453 1.673058 2.414214
n-TETRACOSANE 1.0710 804.000 9.672 1.4100 0.2070 323.750 664.450 323.750 1.366960e-08 0.434942 16.3000 211.254092 0.537690 1.716791 2.414214
n-PENTACOSANE 1.1053 812.000 9.376 1.4600 0.2050 326.650 675.050 326.650 7.883150e-09 0.452649 16.2000 222.281736 0.560184 1.749542 2.414214
n-HEXACOSANE 1.1544 819.000 8.981 1.5200 0.2030 329.250 685.350 329.250 5.090710e-09 0.469975 16.3000 236.076320 0.589864 1.795319 2.414214
n-OCTACOSANE 1.2375 832.000 8.389 1.6300 0.2000 334.350 704.750 334.350 1.030910e-09 0.506321 16.3000 260.822935 0.641513 1.869830 2.414214
n-TRIACONTANE 1.2986 844.000 7.895 1.7500 0.2000 338.650 722.850 338.650 4.146430e-10 0.540500 16.2000 285.195112 0.691485 1.922236 2.414214
n-DOTRIACONTANE 1.3765 855.000 7.402 1.8600 0.1960 342.350 738.850 342.350 6.872220e-11 0.576606 16.2000 312.170937 0.747153 1.986129 2.414214
n-HEXATRIACONTANE 1.5260 874.000 6.711 2.0900 0.1960 349.050 770.150 349.050 2.859590e-12 0.648426 16.1000 359.786568 0.842396 2.099573 2.414214
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
SULFUR 0.2463 1313.000 179.700 0.1580 0.2640 388.360 717.824 388.360 3.054530e-05 0.017870 20.2454 30.324294 0.047262 0.738124 2.414214
SILICON 1.0596 4886.000 529.978 0.2326 0.3070 1685.000 3151.000 1685.000 4.675110e-07 0.011087 197.8380 142.383086 0.059633 1.705765 2.414214
VANADIUM -0.2408 11325.000 10179.124 0.0328 0.3590 2190.000 3653.150 2190.000 3.112910e-05 0.000000 0.0000 39.826793 0.007196 -0.012387 2.414214
XENON 0.0000 289.740 57.640 0.1180 0.2860 161.360 165.030 161.360 8.059990e-01 0.044449 15.9089 4.603650 0.032514 0.374640 2.414214
ZINC 0.0780 3170.000 2866.024 0.0330 0.3636 692.700 1181.150 692.700 2.043470e-04 0.009979 109.4470 11.082762 0.007154 0.493294 2.414214
DIMETHYLDICHLOROSILANE 0.2675 520.350 34.444 0.3580 0.2890 197.050 343.350 197.050 1.323370e-04 0.121206 15.6323 24.847738 0.097718 0.767880 2.414214
DIMETHYLCHLOROSILANE 0.2526 472.000 35.727 0.2990 0.2760 162.150 308.650 162.150 4.154710e-05 0.109917 14.3865 19.710460 0.085455 0.746992 2.414214
TRIMETHYLCHLOROSILANE 0.2701 497.750 31.582 0.3660 0.2830 215.450 330.750 215.450 2.014680e-03 0.127296 14.6548 24.796605 0.101945 0.771513 2.414214
TETRAMETHYLSILANE 0.2240 450.400 27.772 0.3570 0.2680 174.070 299.800 174.070 2.608800e-04 0.137700 12.6060 23.088671 0.104902 0.706563 2.414214
HEXAMETHYLDISILOXANE 0.4176 518.700 18.890 0.6010 0.2670 204.930 373.670 204.930 5.704260e-05 0.213585 12.5781 45.020453 0.177614 0.971616 2.414214
HEXAMETHYLCYCLOTRISILOXANE 0.4742 554.200 16.413 0.6340 0.2290 337.150 408.260 337.150 8.380000e-02 0.249999 12.4479 59.149952 0.218409 1.045284 2.414214
HEXAMETHYLDISILAZANE 0.5101 544.000 18.949 0.6130 0.2600 0.000 399.150 0.000 0.000000e+00 0.209042 13.6319 49.365191 0.185697 1.091113 2.414214
OCTAMETHYLCYCLOTETRASILOXANE 0.5890 586.500 13.146 0.9700 0.2650 290.800 448.150 290.800 7.295520e-04 0.312420 12.9222 82.708801 0.288580 1.189390 2.414214
DECAMETHYLCYCLOPENTASILOXANE 0.6658 619.150 11.448 1.2160 0.2740 235.150 484.100 235.150 6.955680e-07 0.388615 12.0599 105.845270 0.349831 1.281824 2.414214
DODECAMETHYLCYCLOHEXASILOXANE 0.7462 645.800 9.484 1.6100 0.2880 270.150 518.150 270.150 2.834620e-06 0.462201 11.6290 138.999698 0.440452 1.375179 2.414214
DICHLOROSILANE 0.0985 459.000 45.300 0.2370 0.2850 151.150 281.450 151.150 4.528600e-05 0.081957 16.6804 14.700648 0.065540 0.523934 2.414214
TRICHLOROSILANE 0.2031 479.000 41.155 0.2680 0.2810 144.950 305.000 144.950 2.832050e-06 0.101489 15.4886 17.622103 0.075284 0.676739 2.414214
TETRACHLOROSILANE 0.2318 507.000 35.431 0.3260 0.2780 204.300 330.000 204.300 7.816670e-04 0.115581 15.3423 22.931994 0.092559 0.717633 2.414214
TETRAFLUOROSILANE 0.3858 259.000 36.714 0.2020 0.3490 186.350 178.000 186.350 2.178400e+00 0.063961 14.4327 5.775335 0.045631 0.929469 2.414214
SILANE 0.0965 269.700 47.800 0.1327 0.2870 88.150 161.000 88.480 1.581380e-04 0.055126 14.2013 4.809981 0.036496 0.520955 2.414214
DISILANE 0.1017 432.000 50.629 0.1980 0.2830 140.650 259.000 143.850 2.318210e-04 0.074015 16.0554 11.651383 0.055192 0.528696 2.414214
TRIMETHYLALUMINUM 0.2179 620.000 39.477 0.2710 0.2100 288.430 400.270 288.430 8.795490e-03 0.096325 20.4074 30.778578 0.101587 0.697883 2.414214
TRIMETHYLGALLIUM 0.2077 510.000 39.872 0.2110 0.2010 257.450 328.950 257.450 3.297440e-02 0.100788 17.3704 20.619667 0.082736 0.683323 2.414214
CHLOROSULFONIC ACID 0.3010 700.000 83.888 0.1950 0.2850 193.150 427.000 193.150 5.090520e-08 0.000000 26.1158 18.463140 0.053975 0.814405 2.414214
PERCHLORIC ACID 0.0498 631.000 38.095 0.1680 0.1240 171.950 385.000 171.950 1.274040e-06 0.000000 22.2548 33.036959 0.107141 0.450775 2.414214
NITRIC ACID 0.7144 520.000 68.000 0.1450 0.2310 231.550 356.150 231.550 5.997350e-04 2.170300 29.6056 12.569184 0.049464 1.338672 2.414214
WATER 0.3449 647.130 217.666 0.0559 0.2290 273.150 373.150 273.160 6.037300e-03 0.018069 47.8127 6.081375 0.019231 0.874457 2.414214
HYDROGEN PEROXIDE 0.3582 730.150 214.162 0.0777 0.2780 272.725 423.350 272.740 3.424620e-04 2.260200 45.8343 7.868484 0.022053 0.892445 2.414214
MAGNESIUM OXIDE 0.0000 5950.000 33.470 0.2095 0.0144 3105.000 3873.200 3105.000 0.000000e+00 0.000000 162.4650 3343.393845 1.149883 0.374640 2.414214
PHOSPHORUS PENTOXIDE 0.5936 1291.000 228.966 0.0000 0.0000 561.150 787.150 561.150 4.100290e-03 0.000000 0.0000 23.008632 0.036471 1.195016 2.414214

1150 rows × 15 columns


In [40]:
parametrosCompletosPRcsv.loc["NITROGEN TRIFLUORIDE"]


Out[40]:
Omega       0.125500
Tc        233.850000
Pc         44.707000
Vc          0.118700
Zc          0.277000
Tm         66.360000
Tb        144.090000
Ttr        66.360000
Ptr         0.000003
Vliq        0.235000
SolPar     14.996000
ac          3.866416
b           0.033834
rm          0.563942
del1        2.414214
Name: NITROGEN TRIFLUORIDE, dtype: float64

In [41]:
parametrosCompletosPRcsv.loc["1,1,2,2-TETRAPHENYLETHANE"]
#parametrosCompletosPRcsv.loc["3,3,4,4-TETRAPHENYLETHANE"]


Out[41]:
Omega       0.732200
Tc        827.000000
Pc         16.482000
Vc          1.022000
Zc          0.248000
Tm        485.150000
Tb        633.150000
Ttr       485.150000
Ptr         0.016503
Vliq        0.345628
SolPar     14.428800
ac        131.162724
b           0.324555
rm          1.359174
del1        2.414214
Name: 1,1,2,2-TETRAPHENYLETHANE, dtype: float64

In [42]:
name_componets = list(parametrosCompletosPRcsv.index)
name_componets


Out[42]:
['METHANE',
 'ETHANE',
 'PROPANE',
 'n-BUTANE',
 'n-PENTANE',
 'n-HEXANE',
 'n-HEPTANE',
 'n-OCTANE',
 'n-NONANE',
 'n-DECANE',
 'n-UNDECANE',
 'n-DODECANE',
 'n-TRIDECANE',
 'n-TETRADECANE',
 'n-PENTADECANE',
 'n-HEXADECANE',
 'n-HEPTADECANE',
 'n-OCTADECANE',
 'n-NONADECANE',
 'n-EICOSANE',
 'n-HENEICOSANE',
 'n-DOCOSANE',
 'n-TRICOSANE',
 'n-TETRACOSANE',
 'n-PENTACOSANE',
 'n-HEXACOSANE',
 'n-OCTACOSANE',
 'n-TRIACONTANE',
 'n-DOTRIACONTANE',
 'n-HEXATRIACONTANE',
 'ISOBUTANE',
 'ISOPENTANE',
 '2-METHYLPENTANE',
 '3-METHYLPENTANE',
 '2-METHYLHEXANE',
 '3-METHYLHEXANE',
 '2-METHYLHEPTANE',
 '3-METHYLHEPTANE',
 '4-METHYLHEPTANE',
 '2-METHYLOCTANE',
 '3-METHYLOCTANE',
 '4-METHYLOCTANE',
 '2-METHYLNONANE',
 '3-METHYLNONANE',
 '4-METHYLNONANE',
 '5-METHYLNONANE',
 'NEOPENTANE',
 '2,2-DIMETHYLBUTANE',
 '2,3-DIMETHYLBUTANE',
 '2,2-DIMETHYLPENTANE',
 '2,3-DIMETHYLPENTANE',
 '2,4-DIMETHYLPENTANE',
 '3,3-DIMETHYLPENTANE',
 '2,2-DIMETHYLHEXANE',
 '2,3-DIMETHYLHEXANE',
 '2,4-DIMETHYLHEXANE',
 '2,5-DIMETHYLHEXANE',
 '3,3-DIMETHYLHEXANE',
 '3,4-DIMETHYLHEXANE',
 '2,2-DIMETHYLHEPTANE',
 '2,6-DIMETHYLHEPTANE',
 '2,2-DIMETHYLOCTANE',
 '2,3-DIMETHYLOCTANE',
 '2,4-DIMETHYLOCTANE',
 '2,5-DIMETHYLOCTANE',
 '2,6-DIMETHYLOCTANE',
 '2,7-DIMETHYLOCTANE',
 '3-ETHYLPENTANE',
 '2,2,3-TRIMETHYLBUTANE',
 '3-ETHYLHEXANE',
 '2-METHYL-3-ETHYLPENTANE',
 '3-METHYL-3-ETHYLPENTANE',
 '2,2,3,3-TETRAMETHYLBUTANE',
 '2,2,3-TRIMETHYLPENTANE',
 '2,2,4-TRIMETHYLPENTANE',
 '2,3,3-TRIMETHYLPENTANE',
 '2,3,4-TRIMETHYLPENTANE',
 '3,3-DIETHYLPENTANE',
 '2,2-DIMETHYL-3-ETHYLPENTANE',
 '2,4-DIMETHYL-3-ETHYLPENTANE',
 '3-ETHYLHEPTANE',
 '2,2,3,3-TETRAMETHYLPENTANE',
 '2,2,3,4-TETRAMETHYLPENTANE',
 '2,2,4,4-TETRAMETHYLPENTANE',
 '2,3,3,4-TETRAMETHYLPENTANE',
 '2,2,5-TRIMETHYLHEXANE',
 '2,4,4-TRIMETHYLHEXANE',
 'CYCLOPROPANE',
 'CYCLOBUTANE',
 'CYCLOPENTANE',
 'CYCLOHEXANE',
 'CYCLOHEPTANE',
 'CYCLOOCTANE',
 'METHYLCYCLOPENTANE',
 '1,1-DIMETHYLCYCLOPENTANE',
 'cis-1,2-DIMETHYLCYCLOPENTANE',
 'trans-1,2-DIMETHYLCYCLOPENTANE',
 'cis 1,3-DIMETHYLCYCLOPENTANE',
 'trans 1,3-DIMETHYLCYCLOPENTANE',
 'ETHYLCYCLOPENTANE',
 'ISOPROPYLCYCLOPENTANE',
 '1-METHYL-1-ETHYLCYCLOPENTANE',
 'n-PROPYLCYCLOPENTANE',
 'n-BUTYLCYCLOPENTANE',
 'METHYLCYCLOHEXANE',
 '1,1-DIMETHYLCYCLOHEXANE',
 'cis-1,2-DIMETHYLCYCLOHEXANE',
 'trans-1,2-DIMETHYLCYCLOHEXANE',
 'cis-1,3-DIMETHYLCYCLOHEXANE',
 'trans-1,3-DIMETHYLCYCLOHEXANE',
 'cis-1,4-DIMETHYLCYCLOHEXANE',
 'trans-1,4-DIMETHYLCYCLOHEXANE',
 'ETHYLCYCLOHEXANE',
 'ISOPROPYLCYCLOHEXANE',
 'n-PROPYLCYCLOHEXANE',
 'n-BUTYLCYCLOHEXANE',
 'n-DECYLCYCLOHEXANE',
 'cis-DECAHYDRONAPHTHALENE',
 'trans-DECAHYDRONAPHTHALENE',
 'BICYCLOHEXYL',
 'ETHYLENE',
 'PROPYLENE',
 '1-BUTENE',
 '1-PENTENE',
 '1-HEXENE',
 '1-HEPTENE',
 '1-OCTENE',
 '1-NONENE',
 '1-DECENE',
 '1-UNDECENE',
 '1-DODECENE',
 '1-TRIDECENE',
 '1-TETRADECENE',
 '1-PENTADECENE',
 '1-HEXADECENE',
 '1-HEPTADECENE',
 '1-OCTADECENE',
 '1-NONADECENE',
 '1-EICOSENE',
 'cis-2-BUTENE',
 'trans-2-BUTENE',
 'cis-2-PENTENE',
 'trans-2-PENTENE',
 'cis-2-HEXENE',
 'trans-2-HEXENE',
 'cis-3-HEXENE',
 'trans-3-HEXENE',
 'cis-2-HEPTENE',
 'trans-2-HEPTENE',
 'cis-3-HEPTENE',
 'trans-3-HEPTENE',
 'cis-2-OCTENE',
 'cis-3-OCTENE',
 'cis-4-OCTENE',
 'trans-2-OCTENE',
 'trans-3-OCTENE',
 'trans-4-OCTENE',
 'ISOBUTENE',
 '2-METHYL-1-BUTENE',
 '2-METHYL-2-BUTENE',
 '3-METHYL-1-BUTENE',
 '2-METHYL-1-PENTENE',
 '2-METHYL-2-PENTENE',
 '3-METHYL-1-PENTENE',
 '3-METHYL-cis-2-PENTENE',
 '3-METHYL-trans-2-PENTENE',
 '4-METHYL-1-PENTENE',
 '4-METHYL-cis-2-PENTENE',
 '4-METHYL-trans-2-PENTENE',
 '2-METHYL-1-HEXENE',
 '3-METHYL-1-HEXENE',
 '4-METHYL-1-HEXENE',
 '2-METHYL-1-HEPTENE',
 '2,3-DIMETHYL-1-BUTENE',
 '2,3-DIMETHYL-2-BUTENE',
 '3,3-DIMETHYL-1-BUTENE',
 '2-ETHYL-1-BUTENE',
 '2-ETHYL-1-PENTENE',
 '3-ETHYL-1-PENTENE',
 '2,3,3-TRIMETHYL-1-BUTENE',
 '2,3-DIMETHYL-1-HEXENE',
 '2-ETHYL-1-HEXENE',
 '2,4,4-TRIMETHYL-1-PENTENE',
 '2,4,4-TRIMETHYL-2-PENTENE',
 'CYCLOPENTENE',
 'CYCLOHEXENE',
 '1-METHYLCYCLOPENTENE',
 '3-METHYLCYCLOPENTENE',
 '4-METHYLCYCLOPENTENE',
 'CYCLOHEPTENE',
 'CYCLOOCTENE',
 'PROPADIENE',
 '1,2-BUTADIENE',
 '1,3-BUTADIENE',
 'CYCLOPENTADIENE',
 'ISOPRENE',
 '3-METHYL-1,2-BUTADIENE',
 '1,2-PENTADIENE',
 'cis-1,3-PENTADIENE',
 'trans-1,3-PENTADIENE',
 '1,4-PENTADIENE',
 '2,3-PENTADIENE',
 '1,3-CYCLOHEXADIENE',
 '1,4-CYCLOHEXADIENE',
 'METHYLCYCLOPENTADIENE',
 '2,3-DIMETHYL-1,3-BUTADIENE',
 '1,4-HEXADIENE',
 '1,5-HEXADIENE',
 'cis,trans-2,4-HEXADIENE',
 'trans,trans-2,4-HEXADIENE',
 '1,5-CYCLOOCTADIENE',
 'VINYLCYCLOHEXENE',
 '2,5-DIMETHYL-1,5-HEXADIENE',
 '2,5-DIMETHYL-2,4-HEXADIENE',
 'DICYCLOPENTADIENE',
 'ACETYLENE',
 'METHYLACETYLENE',
 'VINYLACETYLENE',
 'DIMETHYLACETYLENE',
 'ETHYLACETYLENE',
 '2-METHYL-1-BUTENE-3-YNE',
 '1-PENTENE-3-YNE',
 '1-PENTENE-4-YNE',
 '3-METHYL-1-BUTYNE',
 '1-PENTYNE',
 '2-PENTYNE',
 '1-HEXYNE',
 '2-HEXYNE',
 '3-HEXYNE',
 '1-HEPTYNE',
 '1-OCTYNE',
 'BENZENE',
 'TOLUENE',
 'ETHYLBENZENE',
 'n-PROPYLBENZENE',
 'n-BUTYLBENZENE',
 'n-PENTYLBENZENE',
 'n-HEXYLBENZENE',
 'n-HEPTYLBENZENE',
 'n-OCTYLBENZENE',
 'n-NONYLBENZENE',
 'n-DECYLBENZENE',
 'n-UNDECYLBENZENE',
 'n-DODECYLBENZENE',
 'n-TRIDECYLBENZENE',
 'n-TETRADECYLBENZENE',
 'n-PENTADECYLBENZENE',
 'n-HEXADECYLBENZENE',
 'n-HEPTADECYLBENZENE',
 'n-OCTADECYLBENZENE',
 'm-XYLENE',
 'o-XYLENE',
 'p-XYLENE',
 'CUMENE',
 'm-ETHYLTOLUENE',
 'o-ETHYLTOLUENE',
 'p-ETHYLTOLUENE',
 'MESITYLENE',
 '1,2,3-TRIMETHYLBENZENE',
 '1,2,4-TRIMETHYLBENZENE',
 'sec-BUTYLBENZENE',
 'tert-BUTYLBENZENE',
 'm-CYMENE',
 'o-CYMENE',
 'p-CYMENE',
 'm-DIETHYLBENZENE',
 'o-DIETHYLBENZENE',
 'p-DIETHYLBENZENE',
 '2-ETHYL-m-XYLENE',
 '2-ETHYL-p-XYLENE',
 '3-ETHYL-o-XYLENE',
 '4-ETHYL-m-XYLENE',
 '4-ETHYL-o-XYLENE',
 '5-ETHYL-m-XYLENE',
 'ISOBUTYLBENZENE',
 '1-METHYL-2-n-PROPYLBENZENE',
 '1-METHYL-3-n-PROPYLBENZENE',
 '1-METHYL-4-n-PROPYLBENZENE',
 '1,2,3,4-TETRAMETHYLBENZENE',
 '1,2,3,5-TETRAMETHYLBENZENE',
 '1,2,4,5-TETRAMETHYLBENZENE',
 'm-DIISOPROPYLBENZENE',
 'p-DIISOPROPYLBENZENE',
 'p-tert-BUTYL ETHYLBENZENE',
 'ETHYNYLBENZENE',
 'STYRENE',
 'alpha-METHYLSTYRENE',
 'm-METHYLSTYRENE',
 'o-METHYLSTYRENE',
 'p-METHYLSTYRENE',
 'cis-1-PROPENYLBENZENE',
 'trans-1-PROPENYLBENZENE',
 'm-DIVINYLBENZENE',
 '2-PHENYLBUTENE-1',
 'cis-2-PHENYLBUTENE-2',
 'trans-2-PHENYLBUTENE-2',
 'p-ISOPROPENYLSTYRENE',
 'CYCLOHEXYLBENZENE',
 'p-tert-BUTYLSTYRENE',
 '4-ISOBUTYLSTYRENE',
 'NAPHTHALENE',
 '1,2,3,4-TETRAHYDRONAPHTHALENE',
 '1-METHYLNAPHTHALENE',
 '2-METHYLNAPHTHALENE',
 '2,6-DIMETHYLNAPHTHALENE',
 '2,7-DIMETHYLNAPHTHALENE',
 '1-ETHYLNAPHTHALENE',
 '2-ETHYLNAPHTHALENE',
 '1-n-PROPYLNAPHTHALENE',
 '1-n-BUTYLNAPHTHALENE',
 '1-PHENYLNAPHTHALENE',
 '1-n-HEXYLNAPHTHALENE',
 '1-n-HEXYL-1,2,3,4-TETRAHYDRONAPHTHALENE',
 '1-n-NONYLNAPHTHALENE',
 '1-n-DECYLNAPHTHALENE',
 'ACENAPHTHALENE',
 'ACENAPHTHENE',
 'FLUORENE',
 'ANTHRACENE',
 'PHENANTHRENE',
 'FLUORANTHENE',
 'PYRENE',
 'CHRYSENE',
 'BIPHENYL',
 'DIPHENYLMETHANE',
 'DIPHENYLACETYLENE',
 'cis-STILBENE',
 'trans-STILBENE',
 '1,1-DIPHENYLETHANE',
 '1,2-DIPHENYLETHANE',
 'm-TERPHENYL',
 'o-TERPHENYL',
 'p-TERPHENYL',
 '2,4-DIPHENYL-4-METHYLPENTENE-1',
 '2,3-DIMETHYL-2,3-DIPHENYLBUTANE',
 'TRIPHENYLMETHANE',
 'TRIPHENYLETHYLENE',
 '1,1,2-TRIPHENYLETHANE',
 'TETRAPHENYLMETHANE',
 'TETRAPHENYLETHYLENE',
 '1,1,2,2-TETRAPHENYLETHANE',
 'd-LIMONENE',
 'alpha-PHELLANDRENE',
 'beta-PHELLANDRENE',
 'alpha-TERPINENE',
 'gamma-TERPINENE',
 'TERPINOLENE',
 '2-NORBORNENE',
 'INDENE',
 'INDANE',
 '1-METHYLINDENE',
 '2-METHYLINDENE',
 'ADAMANTANE',
 'CAMPHENE',
 'alpha-PINENE',
 'beta-PINENE',
 '1,2,3-TRIMETHYLINDENE',
 '1-PHENYLINDENE',
 'AIR',
 'ARSINE',
 'DIBORANE',
 'CARBON MONOXIDE',
 'CARBON DIOXIDE',
 'PERCHLORYL FLUORIDE',
 'NITROSYL CHLORIDE',
 'CHLORINE DIOXIDE',
 'NITROGEN TRIFLUORIDE',
 'TETRAFLUOROHYDRAZINE',
 'HYDROGEN SULFIDE',
 'PHOSPHINE',
 'HYDRAZINE',
 'NITRIC OXIDE',
 'NITROUS OXIDE',
 'OZONE',
 'SULFUR DIOXID',
 'FORMALDEHYDE',
 'GLYOXAL',
 'ACETALDEHYDE',
 'ACROLEIN',
 '1-PROPANAL',
 'trans-CROTONALDEHYDE',
 'METHACROLEIN',
 '1-BUTANAL',
 '2-METHYLPROPANAL',
 '1-PENTANAL',
 '1-HEXANAL',
 'BENZALDEHYDE',
 '1-HEPTANAL',
 '2-METHYLHEXANAL',
 '3-METHYLHEXANAL',
 'TEREPHTHALDEHYDE',
 'p-TOLUALDEHYDE',
 '2-ETHYLHEXANAL',
 '1-OCTANAL',
 '1-NONANAL',
 '1-DECANAL',
 '1-UNDECANAL',
 '1-DODECANAL',
 '1-TRIDECANAL',
 'KETENE',
 'ACETONE',
 'DIKETENE',
 'METHYL ETHYL KETONE',
 'CYCLOPENTANONE',
 'METHYL ETHYL KETONE KETONE',
 'ACETYLACETONE',
 'METHYL ISOPROPYL KETONE',
 '2-PENTANONE',
 '3-PENTANONE',
 'QUINONE',
 'CYCLOHEXANONE',
 'MESITYL OXIDE',
 '3,3-DIMETHYL-2-BUTANONE',
 'ETHYL ISOPROPYL KETONE',
 '2-HEXANONE',
 '3-HEXANONE',
 'METHYL ISOBUTYL KETONE',
 '3-METHYL-2-PENTANONE',
 'DIISOPROPYL KETONE',
 '2-HEPTANONE',
 '3-HEPTANONE',
 '4-HEPTANONE',
 '5-METHYL-2-HEXANONE',
 'ACETOPHENONE',
 '2-OCTANONE',
 'ISOPHORONE',
 'DIISOBUTYL KETONE',
 '2-NONANONE',
 '5-NONANONE',
 'CAMPHOR',
 '2-CYCLOHEXYL CYCLOHEXANONE',
 'BENZOPHENONE',
 'ANTHRAQUINONE',
 'METHANOL',
 'ETHANOL',
 '1-PROPANOL',
 '1-BUTANOL',
 '1-PENTANOL',
 '1-HEXANOL',
 '1-HEPTANOL',
 '1-OCTANOL',
 '1-NONANOL',
 '1-DECANOL',
 '1-UNDECANOL',
 '1-DODECANOL',
 '1-TRIDECANOL',
 '1-TETRADECANOL',
 '1-PENTADECANOL',
 '1-HEXADECANOL',
 '1-HEPTADECANOL',
 '1-OCTADECANOL',
 '1-NONADECANOL',
 '1-EICOSANOL',
 'PROPARGYL ALCOHOL',
 'ALLYL ALCOHOL',
 'ISOPROPANOL',
 '2-BUTANOL',
 '2-METHYL-1-PROPANOL',
 '2-METHYL-2-PROPANOL',
 '2,2-DIMETHYL-1-PROPANOL',
 '2-METHYL-1-BUTANOL',
 '2-METHYL-2-BUTANOL',
 '3-METHYL-1-BUTANOL',
 '3-METHYL-2-BUTANOL',
 '2-PENTANOL',
 '3-PENTANOL',
 '2-ETHYL-1-BUTANOL',
 '2-HEXANOL',
 '2-METHYL-1-PENTANOL',
 '4-METHYL-2-PENTANOL',
 '2-HEPTANOL',
 '5-METHYL-1-HEXANOL',
 '2-ETHYL-1-HEXANOL',
 '2-OCTANOL',
 '2,6-DIMETHYL-4-HEPTANOL',
 '2-NONANOL',
 '8-METHYL-1-NONANOL',
 'CYCLOHEXANOL',
 '1-METHYLCYCLOHEXANOL',
 'cis-2-METHYLCYCLOHEXANOL',
 'trans-2-METHYLCYCLOHEXANOL',
 'cis-3-METHYLCYCLOHEXANOL',
 'trans-3-METHYLCYCLOHEXANOL',
 'cis-4-METHYLCYCLOHEXANOL',
 'trans-4-METHYLCYCLOHEXANOL',
 'L-MENTHOL',
 'PHENOL',
 'BENZYL ALCOHOL',
 'm-CRESOL',
 'o-CRESOL',
 'p-CRESOL',
 '4-HYDROXYSTYRENE',
 'p-ETHYLPHENOL',
 'alpha-METHYLBENZYL ALCOHOL',
 '2-PHENYLETHANOL',
 '2,3-XYLENOL',
 '2,4-XYLENOL',
 '2,5-XYLENOL',
 '2,6-XYLENOL',
 '3,4-XYLENOL',
 '3,5-XYLENOL',
 '1-PHENYL-1-PROPANOL',
 '1-PHENYL-2-PROPANOL',
 '2-PHENYL-2-PROPANOL',
 'p-tert-BUTYLPHENOL',
 'p-tert-AMYLPHENOL',
 'p-tert-OCTYLPHENOL',
 'p-CUMYLPHENOL',
 '2,6-DI-tert-BUTYL-p-CRESOL',
 'NONYLPHENOL',
 'DINONYLPHENOL',
 'ETHYLENE GLYCOL',
 '1,2-PROPYLENE GLYCOL',
 '1,3-PROPYLENE GLYCOL',
 'GLYCEROL',
 '2-BUTYNE-1,4-DIOL',
 'cis-2-BUTENE-1,4-DIOL',
 'trans-2-BUTENE-1,4-DIOL',
 '1,2-BUTANEDIOL',
 '1,3-BUTANEDIOL',
 '1,4-BUTANEDIOL',
 '2,3-BUTANEDIOL',
 '2-METHYL-1,3-PROPANEDIOL',
 'DIETHYLENE GLYCOL',
 'NEOPENTYL GLYCOL',
 '1,5-PENTANEDIOL',
 '2,4-PENTANEDIOL',
 'PENTAERYTHRITOL',
 '1,2-BENZENEDIOL',
 '1,3-BENZENEDIOL',
 'p-HYDROQUINONE',
 '1,2,3-BENZENETRIOL',
 'INOSITOL',
 '1,6-HEXANEDIOL',
 'HEXYLENE GLYCOL',
 'DIPROPYLENE GLYCOL',
 'TRIMETHYLOLPROPANE',
 'TRIETHYLENE GLYCOL',
 'SORBITOL',
 'TETRAETHYLENE GLYCOL',
 'TRIPROPYLENE GLYCOL',
 'p-tert-BUTYLCATECHOL',
 'BISPHENOL A',
 'FORMIC ACID',
 'ACETIC ACID',
 'PROPIONIC ACID',
 'n-BUTYRIC ACID',
 'n-PENTANOIC ACID',
 'n-HEXANOIC ACID',
 'n-HEPTANOIC ACID',
 'n-OCTANOIC ACID',
 'n-NONANOIC ACID',
 'n-DECANOIC ACID',
 'n-UNDECANOIC ACID',
 'n-DODECANOIC ACID',
 'n-TRIDECANOIC ACID',
 'n-TETRADECANOIC ACID',
 'PENTADECANOIC ACID',
 'n-HEXADECANOIC ACID',
 'n-HEPTADECANOIC ACID',
 'STEARIC ACID',
 'NONADECANOIC ACID',
 'n-EICOSANIC ACID',
 'PERACETIC ACID',
 'ACRYLIC ACID',
 'cis-CROTONIC ACID',
 'trans-CROTONIC ACID',
 'METHACRYLIC ACID',
 'ISOBUTYRIC ACID',
 'CITRACONIC ACID',
 'ITACONIC ACID',
 '2-METHYLBUTYRIC ACID',
 'ISOVALERIC ACID',
 'NEOPENTANOIC ACID',
 '2-ETHYL BUTYRIC ACID',
 'CINNAMIC ACID',
 'LINOLENIC ACID',
 'LINOLEIC ACID',
 'OLEIC ACID',
 'ABIETIC ACID',
 'OXALIC ACID',
 'MALONIC ACID',
 'FUMARIC ACID',
 'MALEIC ACID',
 'SUCCINIC ACID',
 'GLUTARIC ACID',
 'ADIPIC ACID',
 'PIMELIC ACID',
 '1,4-CYCLOHEXANEDICARBOXYLIC ACID',
 'SUBERIC ACID',
 'AZELAIC ACID',
 'SEBACIC ACID',
 'BENZOIC ACID',
 'ISOPHTHALIC ACID',
 'PHTHALIC ACID',
 'TEREPHTHALIC ACID',
 'o-TOLUIC ACID',
 'p-TOLUIC ACID',
 'PYROMELLITIC ACID',
 'IBUPROFEN',
 'MALEIC ANHYDRIDE',
 'SUCCINIC ANHYDRIDE',
 'ACETIC ANHYDRIDE',
 'GLUTARIC ANHYDRIDE',
 'PROPIONIC ANHYDRIDE',
 'PHTHALIC ANHYDRIDE',
 'BUTYRIC ANHYDRIDE',
 'TRIMELLITIC',
 'METHYL FORMATE',
 'VINYL FORMATE',
 'ETHYL FORMATE',
 'n-PROPYL FORMATE',
 'n-BUTYL FORMATE',
 'sec-BUTYL FORMATE',
 'tert-BUTYL FORMATE',
 'ISOBUTYL FORMATE',
 'n-PENTYL FORMATE',
 'CYCLOHEXYL FORMATE',
 'n-HEXYL FORMATE',
 'n-HEPTYL FORMATE',
 'n-OCTYL FORMATE',
 'n-NONYL FORMATE',
 'n-DECYL FORMATE',
 'METHYL ACETATE',
 'VINYL ACETATE',
 'ETHYL ACETATE',
 'ALLYL ACETATE',
 'ISOPROPYL ACETATE',
 'n-PROPYL ACETATE',
 'ETHYLENE GLYCOL DIACETATE',
 'ETHYLIDENE DIACETATE',
 'n-BUTYL ACETATE',
 'sec-BUTYL ACETATE',
 'tert-BUTYL ACETATE',
 'ISOBUTYL ACETATE',
 'ISOPENTYL ACETATE',
 'n-PENTYL ACETATE',
 'CYCLOHEXYL ACETATE',
 'n-HEXYL ACETATE',
 'GLYCERYL TRIACETATE',
 'n-HEPTYL',
 '2-ETHYLHEXYL',
 'n-OCTYL',
 'n-NONYL',
 'n-DECYL',
 'METHYL PROPIONATE',
 'VINYL PROPIONATE',
 'ETHYL PROPIONATE',
 'beta-PROPIOLACTONE',
 'gamma-BUTYROLACTONE',
 'gamma-VALEROLACTONE',
 'epsilon-CAPROLACTONE',
 'DI(2-ETHYLHEXYL)ADIPATE',
 'DIISOPROPYL ETHER',
 'DI-n-PROPYL ETHER',
 'METHYL-n-PENTYL ETHER',
 'DI-n-BUTYL ETHER',
 'DI-sec-BUTYL ETHER',
 'DI-tert-BUTYL ETHER',
 'DIISOBUTYL ETHER',
 'ETHYL-n-HEXYL ETHER',
 'DI-n-PENTYL ETHER',
 'DI-n-HEXYL ETHER',
 'DI-n-OCTYL ETHER',
 'DINONYL ETHER',
 'METHYLAL',
 '1,2-DIMETHOXYETHANE',
 'ETHYLAL',
 'PARALDEHYDE',
 'ACETAL',
 '1,2-DIETHOXYETHANE',
 'DIETHYLENE GLYCOL DIMETHYL ETHER',
 'ANISOLE',
 'PHENETOLE',
 'DIETHYLENE GLYCOL DIETHYL ETHER',
 'TRIETHYLENE GLYCOL DIMETHYL ETHER',
 'BENZYL ETHYL ETHER',
 'ANETHOLE',
 'TETRAETHYLENE GLYCOL DIMETHYL ETHER',
 'DIPHENYL ETHER',
 'DIETHYLENE GLYCOL DI-n-BUTYL ETHER',
 'DIBENZYL ETHER',
 'ETHYLENE OXIDE',
 '1,2-PROPYLENE OXIDE',
 '1,3-PROPYLENE OXIDE',
 'TRIOXANE',
 'FURAN',
 '2,5-DIHYDROFURAN',
 '1,2-EPOXYBUTANE',
 '1,2-EPOXY-2-METHYLPROPANE',
 'TETRAHYDROFURAN',
 '1,3-DIOXANE',
 '1,4-DIOXANE',
 '2-METHYLBENZOFURAN',
 'DIBENZOFURAN',
 't-BUTYL HYDROPEROXIDE',
 'CYCLOHEXYL PEROXIDE',
 'ETHYLBENZENE HYDROPEROXIDE',
 'DI-t-BUTYL PEROXIDE',
 'CUMENE HYDROPEROXIDE',
 'p-MENTHANE HYDROPEROXIDE',
 'm-DIISOPROPYLBENZENE HYDROPEROXIDE',
 'p-DIISOPROPYLBENZENE HYDROPEROXIDE',
 'BENZOYL PEROXIDE',
 'DICUMYL PEROXIDE',
 'CARBON TETRACHLORIDE',
 'CHLOROFORM',
 'DICHLOROMETHANE',
 'METHYL CHLORIDE',
 'TETRACHLOROETHYLENE',
 'HEXACHLOROETHANE',
 'TRICHLOROETHYLENE',
 'PENTACHLOROETHANE',
 '1,1-DICHLOROETHYLENE',
 'cis-1,2-DICHLOROETHYLENE',
 'trans-1,2-DICHLOROETHYLENE',
 '1,1,1,2-TETRACHLOROETHANE',
 '1,1,2,2-TETRACHLOROETHANE',
 'VINYL CHLORIDE',
 '1,1,1-TRICHLOROETHANE',
 '1,1,2-TRICHLOROETHANE',
 '1,1-DICHLOROETHANE',
 '1,2-DICHLOROETHANE',
 'ETHYL CHLORIDE',
 'PROPARGYL CHLORIDE',
 '2,3-DICHLOROPROPENE',
 '2-CHLOROPROPENE',
 '3-CHLOROPROPENE',
 '1,2,3-TRICHLOROPROPANE',
 '1,1-DICHLOROPROPANE',
 '1,2-DICHLOROPROPANE',
 '1,3-DICHLOROPROPANE',
 'ISOPROPYL CHLORIDE',
 'n-PROPYL CHLORIDE',
 'HEXACHLORO-1,3-BUTADIENE',
 'CHLOROPRENE',
 '1,3-DICHLORO-trans-2-BUTENE',
 '1,4-DICHLORO-cis-2-BUTENE',
 '1,4-DICHLORO-trans-2-BUTENE',
 '3,4-DICHLORO-1-BUTENE',
 '1,2-DICHLOROBUTANE',
 '1,4-DICHLOROBUTANE',
 '2,3-DICHLOROBUTANE',
 'n-BUTYL CHLORIDE',
 'sec-BUTYL CHLORIDE',
 'tert-BUTYL CHLORIDE',
 'HEXACHLOROCYCLOPENTADIENE',
 '1,5-DICHLOROPENTANE',
 '1-CHLOROPENTANE',
 'HEXACHLOROBENZENE',
 '1,2,4-TRICHLOROBENZENE',
 '1,3,5-TRICHLOROBENZENE',
 'm-DICHLOROBENZENE',
 'o-DICHLOROBENZENE',
 'p-DICHLOROBENZENE',
 'MONOCHLOROBENZENE',
 'BENZOTRICHLORIDE',
 'BENZYL DICHLORIDE',
 '2,4-DICHLOROTOLUENE',
 'BENZYL CHLORIDE',
 'o-CHLOROTOLUENE',
 'p-CHLOROTOLUENE',
 '1-CHLORONAPHTHALENE',
 'TRIBROMOMETHANE',
 'DIBROMOMETHANE',
 'METHYL BROMIDE',
 '1,1,2,2-TETRABROMOETHANE',
 'VINYL BROMIDE',
 '1,1-DIBROMOETHANE',
 '1,2-DIBROMOETHANE',
 'BROMOETHANE',
 '1-BROMOPROPANE',
 '2-BROMOPROPANE',
 '1-BROMOBUTANE',
 '2-BROMOBUTANE',
 'm-DIBROMOBENZENE',
 'BROMOBENZENE',
 'p-BROMOTOLUENE',
 '1-BROMOHEPTANE',
 '1-BROMONAPHTHALENE',
 'DIIODOMETHANE',
 'METHYL IODIDE',
 'ETHYL',
 'ISOPROPYL',
 'n-PROPYL',
 'IODOBENZENE',
 'CARBON TETRAFLUORIDE',
 'TRIFLUOROMETHANE',
 'DIFLUOROMETHANE',
 'METHYL FLUORIDE',
 'TETRAFLUOROETHYLENE',
 'HEXAFLUOROETHANE',
 'PENTAFLUOROETHANE',
 '1,1-DIFLUOROETHYLENE',
 '1,1,1,2-TETRAFLUOROETHANE',
 '1,1,2,2-TETRAFLUOROETHANE',
 'VINYL  FLUORIDE',
 '1,1,1-TRIFLUOROETHANE',
 '1,1-DIFLUOROETHANE',
 '1,2-DIFLUOROETHANE',
 'ETHYL  FLUORIDE',
 'HEXAFLUOROPROPYLENE',
 'OCTAFLUOROPROPANE',
 'OCTAFLUORO-2-BUTENE',
 'OCTAFLUOROCYCLOBUTANE',
 'DECAFLUOROBUTANE',
 'HEXAFLUOROBENZENE',
 'FLUOROBENZENE',
 'BENZOTRIFLUORIDE',
 'BROMOCHLORODIFLUOROMETHANE',
 'BROMOTRICHLOROMETHANE',
 'BROMOTRIFLUOROMETHANE',
 'DIBROMODIFLUOROMETHANE',
 'CHLOROTRIFLUOROMETHANE',
 'DICHLORODIFLUOROMETHANE',
 'TRICHLOROFLUOROMETHANE',
 'CHLORODIFLUOROMETHANE',
 'DICHLOROFLUOROMETHANE',
 'BROMOCHLOROMETHANE',
 'BROMOTRIFLUOROETHYLENE',
 '1,2-DIBROMOTETRAFLUOROETHANE',
 'CHLOROTRIFLUOROETHYLENE',
 'CHLOROPENTAFLUOROETHANE',
 '1,1-DICHLOROTETRAFLUOROETHANE',
 '1,2-DICHLOROTETRAFLUOROETHANE',
 '1,1,2-TRICHLOROTRIFLUOROETHANE',
 '1,1,1,2-TETRACHLORODIFLUOROETHANE',
 '1,1,2,2-TETRACHLORODIFLUOROETHANE',
 'HALOTHANE',
 '2-CHLORO-1,1-DIFLUOROETHYLENE',
 '2-CHLORO-1,1,1,2-TETRAFLUOROETHANE',
 '1,1-DICHLORO-2,2,2-TRIFLUOROETHANE',
 '1,2-DICHLORO-1,1,2-TRIFLUOROETHANE',
 '1,1,1-TRICHLOROFLUOROETHANE',
 '1-CHLORO-1,1-DIFLUOROETHANE',
 '1,1-DICHLORO-1-FLUOROETHANE',
 '2,4-DICHLOROBENZOTRIFLUORIDE',
 'p-CHLOROBENZOTRIFLUORIDE',
 'METHYLAMINE',
 'ETHYLAMINE',
 'n-PROPYLAMINE',
 'n-BUTYLAMINE',
 'n-PENTYLAMINE',
 'n-HEXYLAMINE',
 'n-HEPTYLAMINE',
 'n-OCTYLAMINE',
 'n-NONYLAMINE',
 'n-DECYLAMINE',
 'UNDECYLAMINE',
 'n-DODECYLAMINE',
 'n-TETRADECYLAMINE',
 'DIMETHYLAMINE',
 'ISOPROPYLAMINE',
 'TRIMETHYLAMINE',
 'sec-BUTYLAMINE',
 'tert-BUTYLAMINE',
 'DIETHYLAMINE',
 'ISOBUTYLAMINE',
 'DIISOPROPYLAMINE',
 'DI-n-PROPYLAMINE',
 'TRIETHYLAMINE',
 'DI-n-BUTYLAMINE',
 'DIISOBUTYLAMINE',
 'TRIPROPYLAMINE',
 'DIAMYLAMINE',
 'TRI-n-BUTYLAMINE',
 'TRIAMYLAMINE',
 'MELAMINE',
 'PYRIDINE',
 'ANILINE',
 '2-METHYLPYRIDINE',
 '3-METHYLPYRIDINE',
 '4-METHYLPYRIDINE',
 'm-PHENYLENEDIAMINE',
 'o-PHENYLENEDIAMINE',
 'p-PHENYLENEDIAMINE',
 'PHENYLHYDRAZINE',
 'BENZYLAMINE',
 '2,6-DIMETHYLPYRIDINE',
 'N-METHYLANILINE',
 'm-TOLUIDINE',
 'o-TOLUIDINE',
 'p-TOLUIDINE',
 'TOLUENEDIAMINE',
 'N,N-DIMETHYLANILINE',
 'N-ETHYLANILINE',
 'o-ETHYLANILINE',
 '2,4,6-TRIMETHYLPYRIDINE',
 'ISOQUINOLINE',
 'QUINOLINE',
 'QUINALDINE',
 'N,N-DIETHYLANILINE',
 '2,6-DIETHYLANILINE',
 'DIBENZOPYRROLE',
 'p-AMINODIPHENYL',
 'DIPHENYLAMINE',
 '1,3-DIPHENYLTRIAZENE',
 'p-AMINODIPHENYLAMINE',
 'BENZIDINE',
 'HYDRAZOBENZENE',
 'ACRIDINE',
 "N,N'-DIPHENYL-p-PHENYLENEDIAMINE",
 'ETHYLENEIMINE',
 'ETHYLENEDIAMINE',
 'ALLYLAMINE',
 'PROPYLENEIMINE',
 '1,2-PROPANEDIAMINE',
 'PYRROLE',
 'PYRROLIDINE',
 'PIPERAZINE',
 'DIETHYLENE TRIAMINE',
 'N-METHYLPYRROLE',
 'N-METHYLPYRROLIDINE',
 'PIPERIDINE',
 'DIALLYLAMINE',
 'TRIETHYLENEDIAMINE',
 'HEXAMETHYLENETETRAMINE',
 'CYCLOHEXYLAMINE',
 'HEXAMETHYLENEIMINE',
 'N-AMINOETHYL PIPERAZINE',
 'HEXAMETHYLENEDIAMINE',
 'TRIETHYLENE TETRAMINE',
 'N-METHYLCYCLOHEXYLAMINE',
 'INDOLE',
 'TETRAETHYLENEPENTAMINE',
 'p-AMINOAZOBENZENE',
 'DICYCLOHEXYLAMINE',
 'DEHYDROABIETYLAMINE',
 'CYANOGEN CHLORIDE',
 'HYDROGEN CYANIDE',
 'ACETONITRILE',
 'DICYANDIAMIDE',
 'CYANOGEN',
 'MALONONITRILE',
 'ACRYLONITRILE',
 'PROPIONITRILE',
 'SUCCINONITRILE',
 'cis-CROTONITRILE',
 'trans-CROTONITRILE',
 'METHACRYLONITRILE',
 'VINYLACETONITRILE',
 "2,2'-IMINOBIS-ACETONITRILE",
 'n-BUTYRONITRILE',
 'ISOBUTYRONITRILE',
 'GLUTARONITRILE',
 'VALERONITRILE',
 'cis-DICYANO-1-BUTENE',
 'trans-DICYANO-1-BUTENE',
 '1,4-DICYANO-2-BUTENE',
 '2,2\',2"-NITRILOTRIS-ACETONITRILE',
 'ADIPONITRILE',
 'METHYLGLUTARONITRILE',
 'HEXANENITRILE',
 'BENZONITRILE',
 'NITROMETHANE',
 'TETRANITROMETHANE',
 'NITROETHANE',
 '1-NITROPROPANE',
 '2-NITROPROPANE',
 '1,3,5-TRINITROBENZENE',
 'm-DINITROBENZENE',
 'o-DINITROBENZENE',
 'p-DINITROBENZENE',
 'NITROBENZENE',
 '2,4,6-TRINITROTOLUENE',
 'TETRYL',
 '2,4-DINITROTOLUENE',
 '2,5-DINITROTOLUENE',
 '2,6-DINITROTOLUENE',
 '3,4-DINITROTOLUENE',
 '3,5-DINITROTOLUENE',
 'm-NITROTOLUENE',
 'o-NITROTOLUENE',
 'p-NITROTOLUENE',
 'METHYL ISOCYANATE',
 'n-BUTYL ISOCYANATE',
 'PHENYL ISOCYANATE',
 'CYCLOHEXYL ISOCYANATE',
 'TOLUENE DIISOCYANATE',
 '1,5-NAPHTHALENE DIISOCYANATE',
 "DIPHENYLMETHANE-4,4'-DIISOCYANATE",
 'METHYL MERCAPTAN',
 'ETHYL MERCAPTAN',
 '1,2-ETHANEDITHIOL',
 'ISOPROPYL MERCAPTAN',
 'n-PROPYL MERCAPTAN',
 'n-BUTYL MERCAPTAN',
 'Sec-BUTYL MERCAPTAN',
 'tert-BUTYL  MERCAPTAN',
 'ISOBUTYL MERCAPTAN',
 'n-PENTYL MERCAPTAN',
 'PHENYL MERCAPTAN',
 'CYCLOHEXYL MERCAPTAN',
 'n-HEXYL MERCAPTAN',
 'BENZYL MERCAPTAN',
 'n-HEPTYL MERCAPTAN',
 'n-OCTYL MERCAPTAN',
 'tert-OCTYL MERCAPTAN',
 'n-NONYL MERCAPTAN',
 'n-DECYL MERCAPTAN',
 ...]

In [43]:
#moleculaSmiles = np.chararray(10)
#moleculaSmiles = []

def names_to_smiles(name_componet):
    
    ##for i, name in enumerate(name_componets):
        # query for cid first in order to avoid timeouterror
    ##    moleculaSmiles[i] = get_compounds(name, 'name')[0].canonical_smiles
    ##    print(moleculaSmiles)
        #cid = get_cids(compound, 'name')[0]
        #smiles = get_compounds(cid)[0].canonical_smiles
    cid = get_cids(name_componet, 'name')[0]
    moleculaSmiles = get_compounds(cid)[0].canonical_smiles
        
    #moleculaSmiles = get_compounds(name, 'name')[0].canonical_smiles

    return moleculaSmiles

In [44]:
lista_sustancias = name_componets[40:43] #ensayo 2
lista_sustancias = name_componets[140:143] #ensayo 3
lista_sustancias = name_componets[340:345] #ensayo 4
#lista_sustancias = name_componets[330:342] #ensayo 5

#'perflouro-2-propanone'

lista_sustancias.append("perfluoro-2-propanone")
lista_sustancias.append("methyl m-toluate")
lista_sustancias


Out[44]:
['1,1,2,2-TETRAPHENYLETHANE',
 'd-LIMONENE',
 'alpha-PHELLANDRENE',
 'beta-PHELLANDRENE',
 'alpha-TERPINENE',
 'perfluoro-2-propanone',
 'methyl m-toluate']

In [45]:
dppr_smiles = [names_to_smiles(name) for name in lista_sustancias]

In [46]:
dppr_smiles


Out[46]:
['C1=CC=C(C=C1)C(C2=CC=CC=C2)C(C3=CC=CC=C3)C4=CC=CC=C4',
 'CC1=CCC(CC1)C(=C)C',
 'CC1=CCC(C=C1)C(C)C',
 'CC(C)C1CCC(=C)C=C1',
 'CC1=CC=C(CC1)C(C)C',
 'C(=O)(C(F)(F)F)C(F)(F)F',
 'CC1=CC=CC(=C1)C(=O)OC']

In [47]:
['1,1,2,2-TETRAPHENYLETHANE',
 'd-LIMONENE',
 'alpha-PHELLANDRENE',
 'beta-PHELLANDRENE',
 'alpha-TERPINENE',
 'perfluoro-2-propanone',
 'methyl m-toluate']

['C1=CC=C(C=C1)C(C2=CC=CC=C2)C(C3=CC=CC=C3)C4=CC=CC=C4',
 'CC1=CCC(CC1)C(=C)C',
 'CC1=CCC(C=C1)C(C)C',
 'CC(C)C1CCC(=C)C=C1',
 'CC1=CC=C(CC1)C(C)C',
 'C(=O)(C(F)(F)F)C(F)(F)F',
 'CC1=CC=CC(=C1)C(=O)OC']


Out[47]:
['C1=CC=C(C=C1)C(C2=CC=CC=C2)C(C3=CC=CC=C3)C4=CC=CC=C4',
 'CC1=CCC(CC1)C(=C)C',
 'CC1=CCC(C=C1)C(C)C',
 'CC(C)C1CCC(=C)C=C1',
 'CC1=CC=C(CC1)C(C)C',
 'C(=O)(C(F)(F)F)C(F)(F)F',
 'CC1=CC=CC(=C1)C(=O)OC']

In [ ]:


In [48]:
def graficarMolecula(smiles):
    
    molecula_D = Chem.MolFromSmiles(smiles)
    Draw.MolToMPL(molecula_D, size=(100, 100))
    
    return molecula_D

In [49]:
# ensayo 5

moleculasAgrupadas = [graficarMolecula(smiles) for smiles in dppr_smiles]



In [50]:
moleculasAgrupadas[-1]


Out[50]:

In [51]:
molecula_D = [Chem.MolFromSmiles(smiles) for smiles in dppr_smiles]
molecula_D


Out[51]:
[<rdkit.Chem.rdchem.Mol at 0x7fb3bfcfd1c0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfc9e080>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfea51c0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bf5bc6c0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfcf8530>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfda51c0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfc448f0>]

In [52]:
#ms = [Chem.MolFromSmiles(x) for x in smis]
#Draw.MolsToGridImage(ms)

Draw.MolsToGridImage(molecula_D)


Out[52]:

In [53]:
#img=Draw.MolsToGridImage(molecula_D[:4],molsPerRow=4,subImgSize=(300,300), legends=["molecula_1", "molecula_2", "molecula_3"])
img=Draw.MolsToGridImage(molecula_D,molsPerRow=3,subImgSize=(100,100))

img


Out[53]:

In [54]:
print(dppr_smiles[0])
molecula_A = Chem.MolFromSmiles(dppr_smiles[0])
molecula_A


C1=CC=C(C=C1)C(C2=CC=CC=C2)C(C3=CC=CC=C3)C4=CC=CC=C4
Out[54]:

In [55]:
molecula_A.GetAtomWithIdx(0).GetSymbol()


Out[55]:
'C'

In [56]:
molecula_A.GetAtomWithIdx(14).GetSymbol()


Out[56]:
'C'

In [57]:
# revisar el atributo _Name

#molecula_A.GetProp("_Name")

In [ ]:


In [ ]:


In [58]:
from rdkit import Chem
from rdkit import Chem
from rdkit.Chem import Draw
from IPython.display import SVG
from rdkit.Chem import PandasTools
from rdkit.Chem import AllChem
'CC1=CC=CC(=C1)C(=O)OC'
some_chemicals =[
                'CC1=CC=CC(=C1)C(=O)OC',
                'CCC(C)(C)C(C)(C)CC',
                'CC(=O)Nc1ccc(O)cc1',
                'CC(C)NCC(O)COc1ccccc1CC=C',
                'CC(N)Cc1ccccc1',
                'CC(CS)C(=O)N1CCCC1C(=O)O',
                'CN(C)CCCN1c2ccccc2Sc3ccc(Cl)cc13',
                'OC(=O)Cc1ccccc1Nc2c(Cl)cccc2Cl',
                'NCC1(CC(=O)O)CCCCC1',
                'COC(=O)c1ccccc1O',
                'Nc1ccc(N=Nc2ccccc2)c(N)n1',
                'IC(=O)c1ccccc1',
                'CCOP(=S)(OCC)Oc1cc(Cl)cc(Cl)c1',
                'c1c(C)c(O)c(N)cc1',
                'Oc1c(C)cc(N)cc1',
                'Oc1c(C)ccc(N)c1',
                'c1c(C)c(N)c(O)cc1',]

some_chemicals_MOL =[
                'CC(=O)Nc1ccc(O)cc1', 'molecula_1',
                'CC(C)NCC(O)COc1ccccc1CC=C', 'molecula_1',
                'CC(N)Cc1ccccc1', 'molecula_1',
                ]



some_chemicals = list(map(Chem.MolFromSmiles, some_chemicals))
SVG(Draw._MolsToGridSVG(some_chemicals))
#len(some_chemicals)


Out[58]:
O O O NH OH NH OH O NH2 SH O N O HO N N S Cl OH O NH Cl Cl NH2 O OH O O OH H2N N N NH2 N I O O P S O O Cl Cl OH NH2 HO NH2 HO NH2 NH2 OH

In [59]:
mol = some_chemicals[0]
SVG(Draw._MolsToGridSVG([mol]))


Out[59]:
O O

In [60]:
mal = Chem.MolFromSmiles('CC(C)CCO')
len(mal.GetSubstructMatches(Chem.MolFromSmarts('[CH3;X4]')))
#rta:2


Out[60]:
2

In [61]:
molecula_1 = some_chemicals[0]

len(molecula_1.GetSubstructMatches(Chem.MolFromSmarts('[CH3;X4]')))

molecula_1


Out[61]:

In [62]:
names_to_smiles(['perflouro-2-propanone'])


---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-62-12ac05e306e7> in <module>()
----> 1 names_to_smiles(['perflouro-2-propanone'])

<ipython-input-43-69102b794b26> in names_to_smiles(name_componet)
     10         #cid = get_cids(compound, 'name')[0]
     11         #smiles = get_compounds(cid)[0].canonical_smiles
---> 12     cid = get_cids(name_componet, 'name')[0]
     13     moleculaSmiles = get_compounds(cid)[0].canonical_smiles
     14 

IndexError: list index out of range

In [ ]:
'methyl m-toluate'

In [63]:
A =  {'methyl m-toluate' : 'CC1=CC=CC(=C1)C(=O)OC'}
A


Out[63]:
{'methyl m-toluate': 'CC1=CC=CC(=C1)C(=O)OC'}

In [ ]:


In [79]:
'CC(=O)Nc1ccc(O)cc1'
'perflouro-2-propanone'

#contadorGrupos = np.ones(10)

numSS = np.array([])
#numSS = np.zeros(2)
print(numSS)
def contarGrupos(molecula, grupo):
    ERT = some_chemicals[molecula].GetSubstructMatches(Chem.MolFromSmarts(grupo))
    print(ERT)
    
    numS = len(some_chemicals[molecula].GetSubstructMatches(Chem.MolFromSmarts(grupo), uniquify=True))
    #print(numS)
    #some_chemicals[0]
    
    return numS

#----------------
#grupo1 = 'C'
####grupo1 = '[CH3;X4]'
####grupo2 = 'C=O'
####grupo3 = 'N'
####grupo4 = 'c1ccccc1'
####grupo5 = '[OH]'
####grupo6 = '[CH2]'
#grupo7 = '[$([C][CH3;X4])]'
#grupo7 = '[$([CX2][CH3;X4])]'
#grupo7 = '[#6,C;$([CX2][CH3;X4])]'
#grupo7 = '[$([CX4]C[CH3;X4])]'
#grupo7 = '[CH2]'
# grupo7 = '[CH0][CH0]' # Este funciona para el ejemplo 1

####grupo7 = '[CH0CCC][CH0CCC]'
####grupo8 = '[CH0]'
#----------------



#grupo1 = 'C'
grupo1 = '[CH3;X4]'
grupo4 = '[CH2]'
grupo6 = '[CH0]'
grupo133 = '[CH0CCC][CH0CCC]'

grupos = [grupo1, grupo4, grupo6, grupo133]

#TotalGrupos = [contarGrupos(grupo) for grupo in grupos]

#np.insert(a, 1, 5)
molecula = 1 #3,3,4,4-tetramethylhexane
#molecula = 0 #methyl m-toluate

print("Grupo primarios")

ensayoGrupo1 = contarGrupos(molecula, grupo1)
print("ensayoGrupo1 = ", ensayoGrupo1)

ensayoGrupo4 = contarGrupos(molecula, grupo4)
print("ensayoGrupo4 = ", ensayoGrupo4)

ensayoGrupo6 = contarGrupos(molecula, grupo6)
print("ensayoGrupo6 = ", ensayoGrupo6)

print("Grupos terciarios")

ensayoGrupo133 = contarGrupos(molecula, grupo133)
print("ensayoGrupo133 = ", ensayoGrupo133)

TotalGrupos = np.append(numSS, [contarGrupos(molecula, grupo) for grupo in grupos]) 

#TotalGrupos = np.array([np.append(numSS, contarGrupos(grupo)) for grupo in grupos])
print(TotalGrupos)
some_chemicals[molecula]


[]
Grupo primarios
((0,), (3,), (4,), (6,), (7,), (9,))
ensayoGrupo1 =  6
((1,), (8,))
ensayoGrupo4 =  2
((2,), (5,))
ensayoGrupo6 =  2
Grupos terciarios
((2, 5),)
ensayoGrupo133 =  1
((0,), (3,), (4,), (6,), (7,), (9,))
((1,), (8,))
((2,), (5,))
((2, 5),)
[ 6.  2.  2.  1.]
Out[79]:

In [65]:
mol33 = Chem.MolFromSmiles('CCC(C)(C)C(C)(C)CC')
mol33


Out[65]:

In [66]:
bis3 = mol33.GetSubstructMatches(Chem.MolFromSmarts('[CH0][CH0]'))
print(bis3)


((2, 5),)

In [67]:
bs2 = [mol33.GetBondBetweenAtoms(x,y).GetIdx() for x,y in bis3]
bs2


Out[67]:
[4]

In [68]:
nm = Chem.FragmentOnBonds(mol33,bs2)
nm


Out[68]:

In [69]:
len(some_chemicals)
some_chemicals


Out[69]:
[<rdkit.Chem.rdchem.Mol at 0x7fb3bfba4df0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbb3940>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3080>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc30d0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3120>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3170>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc31c0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3210>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3260>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc32b0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3300>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3350>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc33a0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc33f0>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3440>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc3490>,
 <rdkit.Chem.rdchem.Mol at 0x7fb3bfbc34e0>]

In [70]:
grupo1 = '[CH3;X4]'
grupo4 = '[CH2]'
grupo6 = '[CH0]'
grupo133 = '[CH0CCC][CH0CCC]'

grupo2 = '[CH3][O]'
grupo3 = '[CH3][c]'
grupo15 = '[ch]'
grupo16 = '[c;$([c](c)(c)[C])]'
grupo45 =  '[c]C(=O)O[C]'
grupo128 = '[CH0]'
grupo118 = '[c;$([c](c)(c)[C])][C]=[O]' #'[c][C]=[O]'

grupos = [grupo2, grupo3, grupo15, grupo16, grupo45, grupo128, grupo118, grupo128]

molecula = 0 #methyl m-toluate

print("Grupo primarios")
ensayoGrupo3 = contarGrupos(molecula, grupo3)
print("ensayoGrupo3 = ", ensayoGrupo3)

ensayoGrupo15 = contarGrupos(molecula, grupo15)
print("ensayoGrupo15 = ", ensayoGrupo15)

print("Grupos terciarios")
ensayoGrupo128 = contarGrupos(molecula, grupo128)
print("ensayoGrupo128 = ", ensayoGrupo128)

ensayoGrupo2 = contarGrupos(molecula, grupo2)
print("ensayoGrupo2 = ", ensayoGrupo2)

TotalGrupos = np.append(numSS, [contarGrupos(molecula, grupo) for grupo in grupos]) 
print(TotalGrupos)
some_chemicals[molecula]


Grupo primarios
((0, 1),)
ensayoGrupo3 =  1
((2,), (3,), (4,), (6,))
ensayoGrupo15 =  4
Grupos terciarios
((7,),)
ensayoGrupo128 =  1
((10, 9),)
ensayoGrupo2 =  1
((10, 9),)
((0, 1),)
((2,), (3,), (4,), (6,))
((1,), (5,))
((5, 7, 8, 9, 10),)
((7,),)
((5, 7, 8),)
((7,),)
[ 1.  1.  4.  2.  1.  1.  1.  1.]
Out[70]:

In [80]:
counts = []
for m in some_chemicals[molecula]:
    rc = m.GetRingInfo().NumRings()
    nfrags = len(Chem.GetMolFrags(m))
    ec = m.GetNumBonds()-m.GetNumAtoms()+nfrags
    if ec!=rc:
        print (Chem.MolToSmiles(m),ec,rc)
    counts.append((ec,rc,m.GetProp('_Name')))


---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-80-c1edd8152b31> in <module>()
      1 counts = []
----> 2 for m in some_chemicals[molecula]:
      3     rc = m.GetRingInfo().NumRings()
      4     nfrags = len(Chem.GetMolFrags(m))
      5     ec = m.GetNumBonds()-m.GetNumAtoms()+nfrags

TypeError: 'Mol' object is not iterable

In [81]:
from rdkit.Chem import BRICS

m1 = some_chemicals[molecula]

#BRICS.BRICSDecompose(m1)
sorted(BRICS.BRICSDecompose(m1))
#['[14*]c1nc(N)nc2[nH]cnc12', '[3*]O[3*]', '[4*]CC(=O)C(C)C']

#m2 = cdk2mols[20]


Out[81]:
['CCC(C)(C)C(C)(C)CC']

In [82]:
mol22 = Chem.MolFromSmiles('CC1CC(O)C1CCC1CC1')
bis = mol22.GetSubstructMatches(Chem.MolFromSmarts('[!R][R]'))
print(bis)
mol22


((0, 1), (4, 3), (6, 5), (7, 8))
Out[82]:

In [83]:
bs = [mol22.GetBondBetweenAtoms(x,y).GetIdx() for x,y in bis]
bs


Out[83]:
[0, 3, 5, 7]

In [84]:
bis = mol22.GetSubstructMatches(Chem.MolFromSmarts('[!R][R]'))
print(bis)
mol22

bs = [mol22.GetBondBetweenAtoms(x,y).GetIdx() for x,y in bis]
bs

nm = Chem.FragmentOnBonds(mol22,bs)
nm


((0, 1), (4, 3), (6, 5), (7, 8))
Out[84]:

In [85]:
bis = mol22.GetSubstructMatches(Chem.MolFromSmarts('[!R][R]'))
print(bis)
mol22

bs = [mol22.GetBondBetweenAtoms(x,y).GetIdx() for x,y in bis]
bs

nm = Chem.FragmentOnBonds(mol22,bs)
nm


((0, 1), (4, 3), (6, 5), (7, 8))
Out[85]:

In [ ]:


In [ ]:


In [ ]:


In [86]:
contribucion = [177.307, 239.453, 249.581, 111.837]
grupoContribucion = {grupos[i] : contribucion[i] for i, _ in enumerate(grupos)}
grupoContribucion


Out[86]:
{'[CH0CCC][CH0CCC]': 111.837,
 '[CH0]': 249.581,
 '[CH2]': 239.453,
 '[CH3;X4]': 177.307}

In [87]:
grupoOrdenados = {grupos[i] : TotalGrupos[i] for i, _ in enumerate(grupos)}
grupoOrdenados


Out[87]:
{'[CH0CCC][CH0CCC]': 1.0, '[CH0]': 2.0, '[CH2]': 2.0, '[CH3;X4]': 6.0}

In [88]:
some_chemicals_SMILES =[
                'CC(=O)Nc1ccc(O)cc1',
                'CCC(C)(C)C(C)(C)CC',
                'CC(C)NCC(O)COc1ccccc1CC=C',
                'CC(N)Cc1ccccc1',
                'CC(CS)C(=O)N1CCCC1C(=O)O',
                'CN(C)CCCN1c2ccccc2Sc3ccc(Cl)cc13',
                'OC(=O)Cc1ccccc1Nc2c(Cl)cccc2Cl',
                'NCC1(CC(=O)O)CCCCC1',
                'COC(=O)c1ccccc1O',
                'Nc1ccc(N=Nc2ccccc2)c(N)n1',
                'IC(=O)c1ccccc1',
                'CCOP(=S)(OCC)Oc1cc(Cl)cc(Cl)c1',
                'c1c(C)c(O)c(N)cc1',
                'Oc1c(C)cc(N)cc1',
                'Oc1c(C)ccc(N)c1',
                'c1c(C)c(N)c(O)cc1',
                ]

In [89]:
CONTRIBUCION_MOLECULA =pd.DataFrame(data=[grupoOrdenados, grupoContribucion], index=[some_chemicals_SMILES[0], "3,3,4,4-tetramethylhexane"])
CONTRIBUCION_MOLECULA


Out[89]:
[CH0CCC][CH0CCC] [CH0] [CH2] [CH3;X4]
CC(=O)Nc1ccc(O)cc1 1.000 2.000 2.000 6.000
3,3,4,4-tetramethylhexane 111.837 249.581 239.453 177.307

In [90]:
d = {'col1': [1], 'col2': [3]}
d


Out[90]:
{'col1': [1], 'col2': [3]}

In [91]:
d = {'col1': [1], 'col2': [3]}
df = pd.DataFrame(data=d, index=['foo'])
df
#   col1  col2
#0     1     3
#1     2     4


Out[91]:
col1 col2
foo 1 3

In [92]:
some_chemicals[0]


Out[92]:

In [93]:
numSS = np.array([])

def contarGrupos(molecula, grupo):
   
    numS = len(some_chemicals[molecula].GetSubstructMatches(Chem.MolFromSmarts(grupo), uniquify=True))
    
    return numS

grupo1 = '[CH3;X4]'
grupo4 = '[CH2]'
grupo6 = '[CH0]'
grupo133 = '[CH0CCC][CH0CCC]'

grupos = [grupo1, grupo4, grupo6, grupo133]

molecula = 1

print("Grupo primarios")
ensayoGrupo1 = contarGrupos(molecula, grupo1)
print("ensayoGrupo1 = ", ensayoGrupo1)

ensayoGrupo4 = contarGrupos(molecula, grupo4)
print("ensayoGrupo4 = ", ensayoGrupo4)

ensayoGrupo6 = contarGrupos(molecula, grupo6)
print("ensayoGrupo6 = ", ensayoGrupo6)

print("Grupos terciarios")
ensayoGrupo133 = contarGrupos(molecula, grupo133)
print("ensayoGrupo133 = ", ensayoGrupo133)

TotalGrupos = np.append(numSS, [contarGrupos(molecula, grupo) for grupo in grupos]) 

print(TotalGrupos)
some_chemicals[molecula]


Grupo primarios
ensayoGrupo1 =  6
ensayoGrupo4 =  2
ensayoGrupo6 =  2
Grupos terciarios
ensayoGrupo133 =  1
[ 6.  2.  2.  1.]
Out[93]:

In [94]:
NOMBRES_SUSTANCIA = "3,3,4,4-tetramethylhexane"

sustancia = pd.DataFrame(data=[grupoOrdenados, grupoContribucion], index=[some_chemicals_SMILES[1],NOMBRES_SUSTANCIA])
print(sustancia)
CTGF = np.sum(sustancia.iloc[0] * sustancia.iloc[1])
print("Contribución grupal total = ", CTGF)
Tb = temperatura_Ebullicion_funcional(CONSTANTES_PARAMETROS_EBULLICION, CTGF, numero_grupos)
print("MCG=Metodo de Contribución de Grupos")
print("Temperatura de ebullición MCG = {} K".format(Tb))


                           [CH0CCC][CH0CCC]    [CH0]    [CH2]  [CH3;X4]
CCC(C)(C)C(C)(C)CC                    1.000    2.000    2.000     6.000
3,3,4,4-tetramethylhexane           111.837  249.581  239.453   177.307
Contribución grupal total =  2153.747
MCG=Metodo de Contribución de Grupos
Temperatura de ebullición MCG = 429.50096310441063 K

In [ ]:


In [95]:
Tb = temperatura_Ebullicion_funcional(CONSTANTES_PARAMETROS_EBULLICION, CTGF, numero_grupos)
Tb


Out[95]:
429.50096310441063

In [ ]:


In [ ]:


In [ ]:


In [96]:
numS = len(some_chemicals[0].GetSubstructMatches(Chem.MolFromSmarts(grupo1)))
print(numS)
molecula1 = some_chemicals[0]
molecula1


2
Out[96]:

In [97]:
some_chemicals[0]

pd.DataFrame(data={"uno" : some_chemicals[0]}, index=[some_chemicals_SMILES[0]])


Out[97]:
uno
CC(=O)Nc1ccc(O)cc1 <img src="" alt="Mol"/>

In [ ]:


In [98]:
w = Chem.SDWriter('bz.out.sdf')
for mol in some_chemicals:
    # skip molecules the rdkit doesn't read:
    if not mol: continue
    # add coordinates so we get a correct mol block:
    AllChem.Compute2DCoords(mol)
    w.write(mol)

w.flush()

In [99]:
SDFFile = "bz.out.sdf"
BRDLigs = PandasTools.LoadSDF(SDFFile)
BRDLigs


Out[99]:
ID ROMol
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

In [100]:
BRDLigs['Tc']= [100.23,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4,5]
#BRDLigs['Pc']= [40.23,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4]
#BRDLigs['ac']= [4.2673,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4]
#BRDLigs['b']= [40.23,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4]


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-100-9f20217c2315> in <module>()
----> 1 BRDLigs['Tc']= [100.23,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4,5]
      2 #BRDLigs['Pc']= [40.23,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4]
      3 #BRDLigs['ac']= [4.2673,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4]
      4 #BRDLigs['b']= [40.23,200.34,3,4,5,6,7,8,3,5,4,76,7,5,4]

/home/andres-python/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py in __setitem__(self, key, value)
   3117         else:
   3118             # set column
-> 3119             self._set_item(key, value)
   3120 
   3121     def _setitem_slice(self, key, value):

/home/andres-python/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py in _set_item(self, key, value)
   3192 
   3193         self._ensure_valid_index(value)
-> 3194         value = self._sanitize_column(key, value)
   3195         NDFrame._set_item(self, key, value)
   3196 

/home/andres-python/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py in _sanitize_column(self, key, value, broadcast)
   3389 
   3390             # turn me into an ndarray
-> 3391             value = _sanitize_index(value, self.index, copy=False)
   3392             if not isinstance(value, (np.ndarray, Index)):
   3393                 if isinstance(value, list) and len(value) > 0:

/home/andres-python/anaconda3/lib/python3.5/site-packages/pandas/core/series.py in _sanitize_index(data, index, copy)
   3998 
   3999     if len(data) != len(index):
-> 4000         raise ValueError('Length of values does not match length of ' 'index')
   4001 
   4002     if isinstance(data, ABCIndexClass) and not copy:

ValueError: Length of values does not match length of index

In [101]:
BRDLigs


Out[101]:
ID ROMol
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

In [ ]:


In [102]:
some_chemicals_MOL =[
                'CC(C)(C)C(C)(C)C',    
                'CCC(C)(C)C(C)(C)CC',
                'C(C)(C)C(C)(C)',
                'CC(=O)Nc1ccc(O)cc1',
                'CC(C)NCC(O)COc1ccccc1CC=C',
                'CC(N)Cc1ccccc1',
                ]

some_chemicals = list(map(Chem.MolFromSmiles, some_chemicals_MOL))
SVG(Draw._MolsToGridSVG(some_chemicals))


Out[102]:
O NH OH NH OH O NH2

In [ ]:


In [ ]:


In [103]:
#import sdf

In [104]:
ns = 'CC(C)NCC(O)COc1ccccc1CC=C'

molecula_N = Chem.MolFromSmiles(ns)
molecula_N

Draw.MolsToGridImage(ns)


---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-104-10a853d4a6bd> in <module>()
      4 molecula_N
      5 
----> 6 Draw.MolsToGridImage(ns)

/home/andres-python/anaconda3/lib/python3.5/site-packages/rdkit/Chem/Draw/IPythonConsole.py in ShowMols(mols, maxMols, **kwargs)
    176         kwargs[prop] = kwargs[prop][:maxMols]
    177 
--> 178   res = fn(mols, **kwargs)
    179   if kwargs['useSVG']:
    180     return SVG(res)

/home/andres-python/anaconda3/lib/python3.5/site-packages/rdkit/Chem/Draw/__init__.py in MolsToGridImage(mols, molsPerRow, subImgSize, legends, highlightAtomLists, highlightBondLists, useSVG, **kwargs)
    451                             highlightAtomLists=highlightAtomLists,
    452                             highlightBondLists=highlightBondLists,
--> 453                             **kwargs)
    454 
    455 

/home/andres-python/anaconda3/lib/python3.5/site-packages/rdkit/Chem/Draw/__init__.py in _MolsToGridImage(mols, molsPerRow, subImgSize, legends, highlightAtomLists, highlightBondLists, **kwargs)
    399     d2d = rdMolDraw2D.MolDraw2DCairo(fullSize[0],fullSize[1],subImgSize[0], subImgSize[1])
    400     d2d.DrawMolecules(list(mols),legends=legends,highlightAtoms=highlightAtomLists,
--> 401                       highlightBonds=highlightBondLists,**kwargs)
    402     d2d.FinishDrawing()
    403     res = _drawerToImage(d2d)

TypeError: No registered converter was able to extract a C++ pointer to type RDKit::ROMol from this Python object of type str

In [ ]:


In [ ]:


In [105]:
smis = ['CC(OC(=O)c1c[nH]c2ccccc12)C1CCCCN1C', 
        'CN1CCOc2c(C(=O)NC3CC4CCC(C3)N4C)cc(Cl)cc21',
        'CN1CC2CCC1CC2n1nnc2ccc(Cl)cc2c1=O']
ms = [Chem.MolFromSmiles(x) for x in smis]
Draw.MolsToGridImage(ms)


Out[105]:

In [106]:
molecula_A.GetPropNames

#[x.GetProp("Name") for x in ms[:8]]


Out[106]:
<bound method GetPropNames of <rdkit.Chem.rdchem.Mol object at 0x7fb3bfba4b20>>

In [107]:
img=Draw.MolsToGridImage(ms[:4],molsPerRow=4,subImgSize=(300,300), legends=["molecula_1", "molecula_2", "molecula_3"])
img

# img.save('images/cdk2_molgrid.o.png')


Out[107]:

In [108]:
molecula_A.GetAtoms()


Out[108]:
<rdkit.Chem.rdchem._ROAtomSeq at 0x7fb3b81669e0>

In [109]:
ind_map = {}

for atom in molecula_A.GetAtoms():
    map_num = atom.GetAtomMapNum()
    if map_num:
        ind_map[map_num-1] = atom.GetIdx()
        
ind_map


Out[109]:
{}

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [110]:
def propiedades_criticas_funcional(CONSTANTES_PARAMETROS_CRITICOS, Ni, Ci, n, M, GI, Tb):
    
    a1, b1, c1 = CONSTANTES_PARAMETROS_CRITICOS["Tc"]
    a2, b2, c2 = CONSTANTES_PARAMETROS_CRITICOS["Pc"]
    a3, b3, c3 = CONSTANTES_PARAMETROS_CRITICOS["Vc"]
        
    # Temperatura crítica
    Tc = Tb * (b1 + 1 / (a1 + (np.sum(Ni * Ci) + GI) ** c1))
    # Presión crítica
    # (Pc/kPa) = M ** b / (a + np.sum(Ni * Ci + GI) ** 2)
    Pc = M ** b2 / (a2 + np.sum(Ni * Ci) + GI) ** 2
    # Volumen critico
    # Vc / (1e-6 * m ** 3 * mol ** -1) = (np.sum(Ni * Ci)  + GI) / n ** a + b
    Vc = (np.sum(Ni * Ci)  + GI) / n ** a3 + b3
    
    return Tc, Pc, Vc

Tc, Pc, Vc = propiedades_criticas_funcional(CONSTANTES_PARAMETROS_CRITICOS, Ni, Ci, n, M, GI, Tb)
print("Tc = {} K, Pc = {} kPa, Vc = {} r'$ m ^3 mol^-1$' ".format(Tc, Pc, Vc))


Tc = 345.5377096013509 K, Pc = 0.004062847616787832 kPa, Vc = 100.19479019658522 r'$ m ^3 mol^-1$' 

In [ ]:


In [ ]:

Codificación de SMILES


In [111]:
SMILES_CHARS = [' ',
                  '#', '%', '(', ')', '+', '-', '.', '/',
                  '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
                  '=', '@',
                  'A', 'B', 'C', 'F', 'H', 'I', 'K', 'L', 'M', 'N', 'O', 'P',
                  'R', 'S', 'T', 'V', 'X', 'Z',
                  '[', '\\', ']',
                  'a', 'b', 'c', 'e', 'g', 'i', 'l', 'n', 'o', 'p', 'r', 's',
                  't', 'u']
smi2index = dict( (c,i) for i,c in enumerate( SMILES_CHARS ) )
index2smi = dict( (i,c) for i,c in enumerate( SMILES_CHARS ) )
def smiles_encoder( smiles, maxlen=120 ):
    smiles = Chem.MolToSmiles(Chem.MolFromSmiles( smiles ))
    X = np.zeros( ( maxlen, len( SMILES_CHARS ) ) )
    for i, c in enumerate( smiles ):
        X[i, smi2index[c] ] = 1
    return X
 
def smiles_decoder( X ):
    smi = ''
    X = X.argmax( axis=-1 )
    for i in X:
        smi += index2smi[ i ]
    return smi

In [112]:
mat=smiles_encoder('CC1CCN(CC1N(C)C2=NC=NC3=C2C=CN3)C(=O)CC#N')
mat.shape


Out[112]:
(120, 56)

In [113]:
print( mat )


[[ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 ..., 
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]]

In [114]:
dec=smiles_decoder(mat)
print(dec)


CC1CCN(C(=O)CC#N)CC1N(C)c1ncnc2[nH]ccc12                                                                                

In [ ]:


In [115]:
moleculaConvertida1 = Chem.MolFromSmiles('CC1CCN(CC1N(C)C2=NC=NC3=C2C=CN3)C(=O)CC#N')
moleculaConvertida1


Out[115]:

In [116]:
moleculaConvertida2 = Chem.MolFromSmiles('CC1CCN(C(=O)CC#N)CC1N(C)c1ncnc2[nH]ccc12')
moleculaConvertida2


Out[116]:

In [117]:
mat2=smiles_encoder('CCC(C)(C)C(C)(C)CC')
mat2.shape


Out[117]:
(120, 56)

In [118]:
print(mat2)


[[ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 ..., 
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]]

In [119]:
dec2=smiles_decoder(mat2)
print(dec2)


CCC(C)(C)C(C)(C)CC                                                                                                      

In [129]:
lista_NOMBRES = ['1,1,2,2-TETRAPHENYLETHANE',
 'd-LIMONENE',
 'alpha-PHELLANDRENE',
 'beta-PHELLANDRENE',
 'alpha-TERPINENE',
 'perfluoro-2-propanone',
 'methyl m-toluate']

lista_SMILES = ['C1=CC=C(C=C1)C(C2=CC=CC=C2)C(C3=CC=CC=C3)C4=CC=CC=C4',
 'CC1=CCC(CC1)C(=C)C',
 'CC1=CCC(C=C1)C(C)C',
 'CC(C)C1CCC(=C)C=C1',
 'CC1=CC=C(CC1)C(C)C',
 'C(=O)(C(F)(F)F)C(F)(F)F',
 'CC1=CC=CC(=C1)C(=O)OC']
lista_SMILES

NOMBRES_SMILES = {NOMBRES : SMILES for NOMBRES, SMILES in zip(lista_NOMBRES, lista_SMILES)}
NOMBRES_SMILES


Out[129]:
{'1,1,2,2-TETRAPHENYLETHANE': 'C1=CC=C(C=C1)C(C2=CC=CC=C2)C(C3=CC=CC=C3)C4=CC=CC=C4',
 'alpha-PHELLANDRENE': 'CC1=CCC(C=C1)C(C)C',
 'alpha-TERPINENE': 'CC1=CC=C(CC1)C(C)C',
 'beta-PHELLANDRENE': 'CC(C)C1CCC(=C)C=C1',
 'd-LIMONENE': 'CC1=CCC(CC1)C(=C)C',
 'methyl m-toluate': 'CC1=CC=CC(=C1)C(=O)OC',
 'perfluoro-2-propanone': 'C(=O)(C(F)(F)F)C(F)(F)F'}

In [130]:
smiles22 = NOMBRES_SMILES[str(sustancia_1.value)[2:-3]]
print(smiles22)


---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-130-5fb9e45831a8> in <module>()
----> 1 smiles22 = NOMBRES_SMILES[str(sustancia_1.value)[2:-3]]
      2 print(smiles22)

KeyError: ''

In [131]:
#from IPython.html import widgets
from ipywidgets import widgets
#from IPython.html import widgets # Widget definitions
from IPython.display import display # Used to display widgets in the notebook
from ipywidgets import *
import matplotlib.pyplot as plt
import ipywidgets as wdg
from IPython.display import clear_output

In [132]:
sustancia_1 = widgets.SelectMultiple(
    description="Sustancia",
    options=list(lista_sustancias))

In [133]:
sustancia_1

In [134]:
button = widgets.Button(description="Molecula")

def cargarDatos(b):
    clear_output()
    print("NOMBRE: {}".format(str(sustancia_1.value)[2:-3]))

    smiles = NOMBRES_SMILES[str(sustancia_1.value)[2:-3]]
    print("SMILE: {}".format(smiles))
    
    molecula_D = Chem.MolFromSmiles(smiles)
    Draw.MolToMPL(molecula_D, size=(80, 80))
    
    CONTRIBUCION_MOLECULA =pd.DataFrame(data=[grupoOrdenados, grupoContribucion], index=[smiles, str(sustancia_1.value)[2:-3]])
    print(CONTRIBUCION_MOLECULA)
    
    CTGF = np.sum(CONTRIBUCION_MOLECULA.iloc[0] * CONTRIBUCION_MOLECULA.iloc[1])
    print("Contribución grupal total = ", CTGF)
    Tb = temperatura_Ebullicion_funcional(CONSTANTES_PARAMETROS_EBULLICION, CTGF, numero_grupos)
    print("MCG:Metodo de Contribución de Grupos")
    print("Temperatura de ebullición MCG = {} K".format(Tb))
    
    return molecula_D
 
    #global Tcm, Pcm, wm

button.on_click(cargarDatos)
display(button)

In [135]:
tabs = widgets.Tab(children=[page1, page1, page1, page1, page1, page1])
#display(tabs)

tabs.set_title(0, 'Moleculas')
tabs.set_title(1, 'Modelos')
tabs.set_title(2, 'Parametros')
tabs.set_title(3, 'Resultados')
tabs.set_title(4, 'Experimentales')
tabs.set_title(5, 'Ajuste de Datos')

accord = widgets.Accordion(children=[tabs], width=400)
display(accord)

accord.set_title(0, 'Predicción de propiedades usando Grupos Funcionales')

In [136]:
page1 = widgets.VBox(children=[sustancia_1, button], padding=4)
page1

In [ ]:


In [ ]:


In [137]:
display(accord)


NOMBRE: 
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-125-4004543bbead> in cargarDatos(b)
      5     print("NOMBRE: {}".format(str(sustancia_1.value)[2:-3]))
      6 
----> 7     smiles = NOMBRES_SMILES[str(sustancia_1.value)[2:-3]]
      8     print("SMILE: {}".format(smiles))
      9 

KeyError: ''

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [144]:
mat=smiles_encoder('CC1CCN(CC1N(C)C2=NC=NC3=C2C=CN3)C(=O)CC#N')
mat.shape
print( mat )


[[ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 ..., 
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]]

In [145]:
dec=smiles_decoder(mat)
print(dec)


CC1CCN(C(=O)CC#N)CC1N(C)c1ncnc2[nH]ccc12                                                                                

In [146]:
dec


Out[146]:
'CC1CCN(C(=O)CC#N)CC1N(C)c1ncnc2[nH]ccc12                                                                                '

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:
from ipywidgets import Button, HBox, VBox

form_item_layout = Layout(
    display='flex',
    flex_flow='row',
    justify_content='center'
)


form = Box(form_items, layout=Layout(
    display='flex',
    flex_flow='column',
    border='solid 1px',
    align_items='stretch',
    width='70%'
))
form

In [ ]:
from ipywidgets import Button, HBox, VBox

words = ['correct', 'horse', 'battery', 'staple']
items = [Button(description=w) for w in words]


#left_box = VBox([items[0], items[1]])
left_box = VBox([button,button])
left_box

#right_box = VBox([items[2], items[3]])
#HBox([left_box, right_box])

In [ ]:
HBox([button,button])

In [ ]:
from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label, IntSlider

form_item_layout = Layout(
    display='flex',
    flex_flow='row',
    justify_content='space-between'
)

form_items = [
    Box([Label(value='Moleculas'), 
        #sustancia_1], layout=form_item_layout),
         page1], layout=form_item_layout),
    Box([Label(value='Ship size'),
         FloatText()], layout=form_item_layout),
    Box([Label(value='SMILES'),
         Textarea()], layout=form_item_layout)
]

form = Box(form_items, layout=Layout(
    display='flex',
    flex_flow='column',
    border='solid 2px',
    align_items='stretch',
    width='50%'
))
form

In [ ]:


In [ ]:


In [ ]:


In [ ]: