In [ ]:
%matplotlib inline
In [ ]:
import numpy as np
import os.path as op
import mne
from jumeg import get_jumeg_path
from jumeg.connectivity import plot_degree_circle, plot_lines_and_blobs
import matplotlib.pyplot as plt
import yaml
orig_labels_fname = get_jumeg_path() + '/data/desikan_label_names.yaml'
yaml_fname = get_jumeg_path() + '/data/desikan_aparc_cortex_based_grouping.yaml'
con_fname = get_jumeg_path() + '/data/sample,aparc-con.npy'
replacer_dict_fname = get_jumeg_path() + '/data/replacer_dictionaries.yaml'
with open(replacer_dict_fname, 'r') as f:
replacer_dict = yaml.safe_load(f)['replacer_dict_aparc']
# real connectivity
con = np.load(con_fname)
con = con[0, :, :, 2] + con[0, :, :, 2].T
degrees = mne.connectivity.degree(con, threshold_prop=0.2)
import bct
eigenvec_centrality = bct.eigenvector_centrality_und(con)
fig, ax = plot_lines_and_blobs(con, degrees, yaml_fname,
orig_labels_fname,
replacer_dict=replacer_dict,
figsize=(8, 8), show_node_labels=False,
show_group_labels=True, n_lines=100,
out_fname=None, degsize=10)
ax.set_title('Eigen vector centrality: Coh,alpha')
fig.tight_layout()