In [ ]:
%matplotlib inline
In [ ]:
import numpy as np
import os
import mne
from mne.datasets import sample
from jumeg.mft import apply_mft
from jumeg.mft import jumeg_mft_plot
data_path = sample.data_path()
subject = 'sample'
subjects_dir = data_path + '/subjects'
fwdname = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif'
lblname = 'aparc'
evoname = data_path + '/MEG/sample/sample_audvis-ave.fif'
evocondition = 'Left Auditory'
rawname = data_path + '/MEG/sample/sample_audvis_10s-raw.fif'
t1_fname = subjects_dir + '/' + 'sample/mri/T1.mgz'
# Set up pick list: MEG - bad channels
want_meg = 'mag'
want_ref = False
want_eeg = False
want_stim = False
exclude = 'bads'
include = []
print("########## MFT parameters:")
# mftpar = { 'prbfct':'Gauss',
# 'prbcnt':np.array([[-1.039, 0.013,0.062],[-0.039, 0.013,0.062]]),
# 'prbhw':np.array([[0.040,0.040,0.040],[0.040,0.040,0.040]]) }
mftpar = {'prbfct': 'uniform',
'prbcnt': None,
'prbhw': None}
mftpar.update({'iter': 2, 'currexp': 1.0})
mftpar.update({'regtype': 'PzetaE', 'zetareg': 1.00})
# mftpar.update({ 'regtype':'classic', 'zetareg':1.0})
mftpar.update({'solver': 'lu', 'svrelcut': 5.e-4})
print("mftpar['prbcnt' ] = ", mftpar['prbcnt'])
print("mftpar['prbhw' ] = ", mftpar['prbhw'])
print("mftpar['iter' ] = ", mftpar['iter'])
print("mftpar['regtype' ] = ", mftpar['regtype'])
print("mftpar['zetareg' ] = ", mftpar['zetareg'])
print("mftpar['solver' ] = ", mftpar['solver'])
print("mftpar['svrelcut'] = ", mftpar['svrelcut'])
cdmcut = 0.10
print("cdmcut = ", cdmcut)
print("########## get labels:")
if lblname is not None:
labels = mne.read_labels_from_annot(subject, parc=lblname,
subjects_dir=subjects_dir)
else:
labels = None
print("##########################")
print("##### Calling apply_mft()")
print("##########################")
fwd = mne.read_forward_solution(fwdname, verbose=True)
fwdspec = mne.io.pick.pick_types_forward(fwd, meg=want_meg, ref_meg=False,
eeg=False, exclude=exclude)
dataspec = mne.read_evokeds(evoname, condition=evocondition,
baseline=(None, 0), verbose=True)
fwdmag, qualmft, stc_mft = apply_mft(fwdspec, dataspec, evocondition=evocondition,
subject=subject, meg=want_meg, save_stc=False,
calccdm='all', cdmcut=cdmcut, cdmlabels=labels,
mftpar=mftpar, verbose='verbose')
evo = mne.read_evokeds(evoname, condition=evocondition, baseline=(None, 0))
tmin = -0.2
tstep = 1. / evo.info['sfreq']
stcdata = stc_mft.data
print(" ")
print("########## Some geo-numbers:")
lhinds = np.where(fwdmag['source_rr'][:, 0] <= 0.)
rhinds = np.where(fwdmag['source_rr'][:, 0] > 0.)
print("> Discriminating lh/rh by sign of fwdmag['source_rr'][:,0]:")
print("> lhinds[0].shape[0] = ", lhinds[0].shape[0], " rhinds[0].shape[0] = ", rhinds[0].shape[0])
invmri_head_t = mne.transforms.invert_transform(fwdmag['info']['mri_head_t'])
mrsrc = np.zeros(fwdmag['source_rr'].shape)
mrsrc = mne.transforms.apply_trans(invmri_head_t['trans'], fwdmag['source_rr'], move=True)
lhmrinds = np.where(mrsrc[:, 0] <= 0.)
rhmrinds = np.where(mrsrc[:, 0] > 0.)
print("> Discriminating lh/rh by sign of fwdmag['source_rr'][:,0] in MR coords:")
print("> lhmrinds[0].shape[0] = ", lhmrinds[0].shape[0], " rhmrinds[0].shape[0] = ", rhmrinds[0].shape[0])
# plotting routines
jumeg_mft_plot.plot_global_cdv_dist(stcdata)
jumeg_mft_plot.plot_visualize_mft_sources(fwdmag, stcdata, tmin=tmin, tstep=tstep,
subject=subject, subjects_dir=subjects_dir)
jumeg_mft_plot.plot_cdv_distribution(fwdmag, stcdata)
jumeg_mft_plot.plot_max_amplitude_data(fwdmag, stcdata, tmin=tmin, tstep=tstep,
subject=subject)
jumeg_mft_plot.plot_max_cdv_data(stc_mft, lhmrinds, rhmrinds)
jumeg_mft_plot.plot_cdvsum_data(stc_mft, lhmrinds, rhmrinds)
jumeg_mft_plot.plot_quality_data(qualmft, stc_mft)
jumeg_mft_plot.plot_cdm_data(qualmft, stc_mft, cdmlabels=labels)
jumeg_mft_plot.plot_jlong_labeldata(qualmft, stc_mft, labels)
jumeg_mft_plot.plot_jtotal_labeldata(qualmft, stc_mft, labels)
jumeg_mft_plot.plot_jlong_data(qualmft, stc_mft)
print("Done.")