In [12]:
import warnings
warnings.filterwarnings('ignore')
from ds.models.model import Model
from ds.models.Explore import TextInterpret

In [13]:
sentiment = Model()
sentiment.load('sentiment')


transferring from s3

In [14]:
TextInterpret('i love this product', sentiment.predict)


Out[14]:
<lime.explanation.Explanation at 0x7f6d27442350>

In [17]:
sentiment.comments.display_history()


Out[17]:
ID comment name ts
0 0 Created Thread SYSTEM 2017-01-06 23:37:37.551286

In [9]:
new_comment = """
Looks decent, remind me again though what the class definitions are?
"""
sentiment.comments.add_comment(new_comment, 'Pramit')

In [18]:
sentiment.save()


saving to s3

In [24]:
from ds import datasets
reviews = datasets.load('movie_reviews')
sentence = " ".join(reviews.sents()[0])
TextInterpret(sentence, sentiment.predict)


Out[24]:
<lime.explanation.Explanation at 0x7f6d2744e590>

What else we've learned we need as candidates for feature additions:

1: Additional types of explanations/interpretations

2: Plotting/Textual explanations

3: Implemetation details (open source/ in house / combo)

4: Platform integration: abstractions around models (particularly within platform)


In [ ]: